python绘制混淆矩阵

要在Python中绘制机器学习中的混淆矩阵,我们可以使用一些流行的数据科学库,如NumPy、Matplotlib和Scikit-learn。以下是一种基本的方法来实现:

  1. 导入所需的库:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
  1. 准备真实标签和预测标签:
y_true = np.array([0, 1, 0, 1, 0, 1, 0, 1])
y_pred = np.array([0, 0, 1, 1, 0, 1, 1, 0])

在这个例子中,y_true是真实的类别标签,y_pred是预测的类别标签。

  1. 计算混淆矩阵:
cm = confusion_matrix(y_true, y_pred)

这将计算真实标签和预测标签之间的混淆矩阵。

  1. 可视化混淆矩阵:
fig, ax = plt.subplots()
ax.imshow(cm, cmap='Blues')

# 添加颜色条
cbar = ax.figure.colorbar(ax.imshow(cm, cmap='Blues'))
cbar.ax.set_ylabel('数量', rotation=-90, va="bottom")

# 添加文本
for i in range(cm.shape[0]):
    for j in range(cm.shape[1]):
        ax.text(j, i, cm[i, j],
                ha="center", va="center",
                color="white" if cm[i, j] > np.max(cm) / 2 else "black")

ax.set_xlabel('预测标签')
ax.set_ylabel('真实标签')
ax.set_title('混淆矩阵')

plt.show()

这段代码将绘制混淆矩阵,并配以相应的颜色条和标签。

运行以上代码,你将获得一个漂亮的混淆矩阵可视化图。

请注意,以上的示例是一个简单的二分类问题的混淆矩阵。在多分类问题中,混淆矩阵的维度会相应增加。此外,你还可以对混淆矩阵进行其他定制化的样式和表现形式。

希望以上内容能帮助你绘制机器学习中的混淆矩阵,并更好地理解模型的预测性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓林爱学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值