排列问题(递归算法)

问题描述:对n个元素进行全排列,列出所有情况,例如1,2,3三个数字会得到1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 1这6中情况

思路:设n为元素个数,元素集合为R(r1,r2,r3…rn),计算方法为Perm(n)

当n = 1时,则只有一种情况 r;

当n > 1时,则有(r1)Perm(R1),(r2)Perm(R2),(r3)Perm(R3) … … (rn)Perm(Rn)

              以1,2,3为例全排列,共有以下排列:

             1 Perm(2,3)  即:以1为前缀的所有组合

             2 Perm(1,3)  即:以2为前缀的所有组合

             3 Perm(2,3)  即:以3为前缀的所有组合

注:Perm(k,m)利用递归的思想即可不断划分前缀,直到只剩下1个元素,则只有一种情况,即为找到了一种排列。

#include<iostream>
using namespace std;

void perm(int list[], int k, int m){
	
	if(k == m){
		
		for(int i = 0; i <= m; i++){
			//输出list 
			cout << list[i];
		}
		cout << endl;
		
	} else {
		
		for(int i = k; i <= m; i++){
			swap(list[k], list[i]);
			perm(list, k + 1, m);
			swap(list[k], list[i]); //还原
		}
	}
}

void swap(int &a, int &b){
	int temp = a;
	a = b;
	b = temp;
}

int main(){
	int a[3] = {1, 2, 3};
	perm(a, 0, 2);
	return 0;
}

在这里插入图片描述

思考过程:

在这里插入图片描述

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页