PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics

Abstract

We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis.

Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles.

A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, “cage meshes,” or any other geometry embedding, highlighting the principle of “what you see is what you simulate ({WS}^{2}).”

Our method demonstrates exceptional versatility across a wide variety of materials(elastic entities, plastic metals, non-Newtonian fluids, and granular material

### 使用 Deformable-3D-Gaussians 模型训练自定义数据集 为了使用 **Deformable-3D-Gaussians** 模型来训练自定义数据集,以下是详细的说明: #### 数据准备 在开始之前,需要确保自定义数据集中包含高质量的三维重建目标及其对应的标注信息。这些标注通常包括物体的关键点位置、姿态估计以及可能的局部几何特征描述。如果涉及单目图像输入,则需额外提供相机参数校准文件以支持后续处理过程[^1]。 对于具体的数据格式转换工作,可以参考如下步骤(尽管这里不适用传统意义上的分步指导): - 将原始图片序列按照固定命名规则存储于指定目录下; - 创建相应的标签文件夹用于保存每张图对应的空间坐标系映射关系或其他必要元数据; #### 安装依赖环境 首先确认安装好 Python 开发环境中必要的库版本兼容情况,比如 PyTorch 或 TensorFlow 等框架的支持状况。此外还需要加载 OpenGL 渲染引擎以便实现更精确地模拟真实世界光照条件下对象外观变化效果[^2]。 接着通过 pip 工具快速获取项目所需其余外部模块资源列表如下所示: ```bash pip install numpy scipy matplotlib opencv-python scikit-image h5py trimesh pyrender tqdm torch torchvision transforms pillow imageio easydict yaml yacs hydra-core omegaconf click wandb tensorboardX visdom ipdb faiss-cpu faiss-gpu timm einops kornia ``` #### 配置超参与脚本修改 深入研究官方开源仓库内的默认配置文档内容之后,针对个人需求调整部分关键设置项数值范围。例如学习率衰减策略安排表、批量大小选取依据等均会影响最终收敛性能表现水平高低程度不同之处所在何处可见一斑矣! 同时注意替换原有预设路径指向至本地实际存放地址处即可顺利完成初始化准备工作阶段任务达成目的所求也就不远矣哉乎焉耳矣夫耶?! 最后执行启动命令行界面运行调试模式下的第一次迭代测试验证流程操作完毕后即告一段落结束整个讲解环节啦~😊 ```python # Example of training script modification snippet. cfg = OmegaConf.load('configs/default.yaml') cfg.dataset.root_dir = '/path/to/your/custom/dataset' cfg.model.num_gaussian_points = 64 # Adjust based on your object complexity. trainer = Trainer(cfg) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于初见月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值