3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods(1)

Abstract

We present a work-in-progress survey on 3DGS compression methods, focusing on their statistical performance across various benchmarks. This survey aims to facilitate comparability by summarizing key statistics of different compression approaches in a tabulated format.

The datasets evaluated include TanksAndTemples, MipNeRF360, DeepBlending, and SyntheticNeRF.

For each method, we report the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and the resultant size in megabytes (MB), as provided by the respective authors.

project website

Figure

The best methods in each category are highlighted ( fist , second , third ). The ranks represent the average rankings of the methods across all available datasets.

The quality metrics PSNR, SSIM, and LPIPS are equally weighted with the model size, meaning they each contribute one-sixth to the ranks, while the size contributes half.

Figure 1

Reducing the Memory Footprint of 3D Gaussian Splatting

This approach addresses three main issues contributing to large storage sizes in 3DGS.

To reduce the number

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于初见月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值