爬取大学查询热度并生成可视化地图

import requests
import csv
import time
from pyecharts import options as opts
from pyecharts.charts import Map


class DaXue():
    # 初始化
    def __init__(self):
        # 记录大学总数量
        self.num = 1
        # 设置请求头
        self.headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36"
        }
        # 初始化csv,并将获取内容保存
        self.file = open('大学热度排行utf-8.csv', 'a', encoding='utf-8-sig', newline='')
        self.write_csv = csv.writer(self.file)
        self.write_csv.writerow(
            ['排行', '大学名称', '公/私办', '所在省份','所在城市', '具体地址', '办学层次', '办学性质', '总查询热度', '本年查询热度'])

    def save_file(self, file_data):
        # 保存到csv文件
        # file_data[]
        self.write_csv.writerow(file_data)

    def run(self):
        # 循环爬取所有学校的热度
        for i in range(1, 79):
            print(f'正在爬取第{i}页内容')
            url = f'https://api.eol.cn/gkcx/api/?access_token=&admissions=&central=&department=&dual_class=&f211=&f985=&is_doublehigh=&keyword=&nature=&page={i}&province_id=&school_type=6000&signsafe=&size=15&sort=view_total&sorttype=desc&type=&uri=apidata/api/gk/school/lists'
            res = requests.get(url, headers=self.headers).json()
            page_res = res
            # print(page_res)
            # 每一页的大学数据存放在列表中
            school_list = page_res['data']['item']
            # 利用循环将每个大学的数据写入csv文件
            for index in school_list:
                name = index['name']  # 大学名称
                nature_name = index['nature_name']  # 公/私办
                province_name = index['province_name']#所在省份
                city_name = index['city_name']  # 所在城市
                address = index['address']  # 具体地址
                level_name = index['level_name']  # 办学层次
                type_name = index['type_name']  # 办学性质
                view_total = index['view_total']  # 总查询热度
                view_year = index['view_year']  # 本年查询热度
                # 将数据写入csv文件
                self.save_file([
                    self.num,
                    name,
                    nature_name,
                    province_name,
                    city_name,
                    address,
                    level_name,
                    type_name,
                    view_total,
                    view_year])
                print(f'第{self.num}条数据写入成功!')
                print('-' * 100)
                self.num += 1
                #睡眠0.2秒,防止反扒
                time.sleep(0.5)
        print('数据保存完毕!')


#将数据可视化
class Vasualable():

    def count_data(self):

        #从保存的csv文件中逐个读取数据
        csv_file = csv.reader(open('大学热度排行utf-8.csv','r',encoding='utf-8'))
        # print(type(csv_file))     #<class '_csv.reader'>
        province = []
        total = []
        total_dict = {}
        for index in csv_file:
            # print(type(index))   #<class 'list'>
            #第一行舍弃  ['排行', '大学名称', '公/私办', '所在省份', '所在城市', '具体地址', '办学层次', '办学性质', '总查询热度', '本年查询热度']
            if index[0].isnumeric():
                #将个省份数据统一并放进province_total
                total_dict[index[3]] = total_dict.get(index[3],0) +int(index[-1])
        # print(total)  {'省份':热度,...}
        for a,b in total_dict.items():
            province.append(a)
            total.append(b)
        #province与total相同位置一一对应
        return  province,total

    def run(self):
        print('正在生成可视化地图....')
        province,total = self.count_data()
        c = (
            Map()
                .add("", [list(z) for z in zip(province, total)], "china")
                .set_global_opts(
                title_opts=opts.TitleOpts(title="本年度各省高校查询热度"),
                visualmap_opts=opts.VisualMapOpts(max_=50000000)
            )
        )
        c.render('test.html')
        print('地图生成完毕!')
if __name__ == '__main__':
    #爬取并保存数据
    # DaXue().run()
    #根据保存的csv数据生成可视化地图
    Vasualable().run()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值