数据结构之前缀树

Trie [traɪ] 读音和 try 相同,它的另一些名字有:字典树,前缀树,单词查找树等。

Trie 是一颗非典型的多叉树模型,多叉好理解,即每个结点的分支数量可能为多个。

为什么说非典型呢?因为它和一般的多叉树不一样,尤其在结点的数据结构设计上,比如一般的二叉树的结点是这样的:

public class TreeNode {
    int val;//存放数据
    TreeNode left;//左子树
    TreeNode right;//右子树
}

一般的多叉树是这样的:

/* 基本的 N 叉树节点 */ 
class TreeNode { 
	int val;//存放数据
	TreeNode[] children;//存放所有的子树
}

当然,可以顺便把图的数据结构写出来:

/* 图节点的逻辑结构-邻接矩阵 */ 
class Vertex { 
   	// 邻接表 
   	// graph[x] 存储 x 的所有邻居节点
  	List<Integer>[] graph;
  	
	// 邻接矩阵
	// matrix[x][y] 记录 x 是否有⼀条指向 y 的边
	int[][] matrix;
}

而前缀树的数据结构是这样的:

public class Trie{
    Trie[] trie; //字母映射表
    boolean isEnd; //该结点是否是一个串的结束
};

Trie是一棵有根树,其每个节点包含以下字段:

指向子节点的指针数组children。对于本题而言,数组长度为 26,即小写英文字母的数量。此时children[0] 对应小写字母 a,children[1] 对应小写字母 b,…,children[25] 对应小写字母 z。
布尔字段 isEnd,表示该节点是否为字符串的结尾。

插入字符串

我们从字典树的根开始,插入字符串。对于当前字符对应的子节点,有两种情况:

1.子节点存在。沿着指针移动到子节点,继续处理下一个字符。
2.子节点不存在。创建一个新的子节点,记录在 children 数组的对应位置上,然后沿着指针移动到子节点,继续搜索下一个字符。

重复以上步骤,直到处理字符串的最后一个字符,然后将当前节点标记为字符串的结尾。

查找前缀

我们从字典树的根开始,查找前缀。对于当前字符对应的子节点,有两种情况:

1.子节点存在。沿着指针移动到子节点,继续搜索下一个字符。
2.子节点不存在。说明字典树中不包含该前缀,返回空指针。

重复以上步骤,直到返回空指针或搜索完前缀的最后一个字符。

若搜索到了前缀的末尾,就说明字典树中存在该前缀。此外,若前缀末尾对应节点的 isEnd 为真,则说明字典树中存在该字符串。

查找字符串
根据查找前缀,我们判断前缀单词的最后一个字符是否是当前前缀树的叶节点,是的话返回true。比如前缀树有“apple”,查找“app”是不存在的,因为“app”的最后一个’p’不是叶节点,但是“app”是前缀,因为在树中可以搜索得到。

public class Trie {
    private Trie[] children;//字典映射表,children[0]代表该树存在子节点a,...,children[25]代表存在子节点z;
    boolean isEnd;//判断当前节点是否是叶节点

    public Trie() {
        children = new Trie[26];//本题只有26个英文字母,所以定义一个长度为26的Trie数组,如果二叉树,长度为2,多叉树,长度为最长的。
    }

    public void insert(String word) {
        Trie p = this;//p用来遍历,谁创建Trie对象,p就指向谁。
        for (int i = 0; i < word.length(); i++) {//对word遍历
            char ch = word.charAt(i);
            int index = ch - 'a';//index=0,对应的是'a'
            if (p.children[index] == null) {//如果当前节点没有'a',
                p.children[index] = new Trie();//创建节点'a',通过children[0]!=null判断p有子节点'a'
            }
            p = p.children[index];//无论是否创建新节点,p都下移。
        }
        p.isEnd = true;//for循环结束,最后一个节点是叶节点
    }

    public Trie searPrefix(String word) {
        Trie p = this;
        for (int i = 0; i < word.length(); i++) {
            char ch = word.charAt(i);
            int index = ch - 'a';
            //当前节点不存在
            if (p.children[index] == null) return null;
            p = p.children[index];
        }
        return p;//遍历结束
    }

    public boolean search(String word) {
        Trie p = searPrefix(word);
        //对于search,要遍历到叶节点才返回true
        return p != null && p.isEnd;
    }

    public boolean startWith(String word) {
        //对于startWith,不需要遍历到叶节点
        return searPrefix(word) != null;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值