Trie [traɪ] 读音和 try 相同,它的另一些名字有:字典树,前缀树,单词查找树等。
Trie 是一颗非典型的多叉树模型,多叉好理解,即每个结点的分支数量可能为多个。
为什么说非典型呢?因为它和一般的多叉树不一样,尤其在结点的数据结构设计上,比如一般的二叉树的结点是这样的:
public class TreeNode {
int val;//存放数据
TreeNode left;//左子树
TreeNode right;//右子树
}
一般的多叉树是这样的:
/* 基本的 N 叉树节点 */
class TreeNode {
int val;//存放数据
TreeNode[] children;//存放所有的子树
}
当然,可以顺便把图的数据结构写出来:
/* 图节点的逻辑结构-邻接矩阵 */
class Vertex {
// 邻接表
// graph[x] 存储 x 的所有邻居节点
List<Integer>[] graph;
// 邻接矩阵
// matrix[x][y] 记录 x 是否有⼀条指向 y 的边
int[][] matrix;
}
而前缀树的数据结构是这样的:
public class Trie{
Trie[] trie; //字母映射表
boolean isEnd; //该结点是否是一个串的结束
};
Trie是一棵有根树,其每个节点包含以下字段:
指向子节点的指针数组children。对于本题而言,数组长度为 26,即小写英文字母的数量。此时children[0] 对应小写字母 a,children[1] 对应小写字母 b,…,children[25] 对应小写字母 z。
布尔字段 isEnd,表示该节点是否为字符串的结尾。
插入字符串
我们从字典树的根开始,插入字符串。对于当前字符对应的子节点,有两种情况:
1.子节点存在。沿着指针移动到子节点,继续处理下一个字符。
2.子节点不存在。创建一个新的子节点,记录在 children 数组的对应位置上,然后沿着指针移动到子节点,继续搜索下一个字符。
重复以上步骤,直到处理字符串的最后一个字符,然后将当前节点标记为字符串的结尾。
查找前缀
我们从字典树的根开始,查找前缀。对于当前字符对应的子节点,有两种情况:
1.子节点存在。沿着指针移动到子节点,继续搜索下一个字符。
2.子节点不存在。说明字典树中不包含该前缀,返回空指针。
重复以上步骤,直到返回空指针或搜索完前缀的最后一个字符。
若搜索到了前缀的末尾,就说明字典树中存在该前缀。此外,若前缀末尾对应节点的 isEnd 为真,则说明字典树中存在该字符串。
查找字符串
根据查找前缀,我们判断前缀单词的最后一个字符是否是当前前缀树的叶节点,是的话返回true。比如前缀树有“apple”,查找“app”是不存在的,因为“app”的最后一个’p’不是叶节点,但是“app”是前缀,因为在树中可以搜索得到。
public class Trie {
private Trie[] children;//字典映射表,children[0]代表该树存在子节点a,...,children[25]代表存在子节点z;
boolean isEnd;//判断当前节点是否是叶节点
public Trie() {
children = new Trie[26];//本题只有26个英文字母,所以定义一个长度为26的Trie数组,如果二叉树,长度为2,多叉树,长度为最长的。
}
public void insert(String word) {
Trie p = this;//p用来遍历,谁创建Trie对象,p就指向谁。
for (int i = 0; i < word.length(); i++) {//对word遍历
char ch = word.charAt(i);
int index = ch - 'a';//index=0,对应的是'a'
if (p.children[index] == null) {//如果当前节点没有'a',
p.children[index] = new Trie();//创建节点'a',通过children[0]!=null判断p有子节点'a'
}
p = p.children[index];//无论是否创建新节点,p都下移。
}
p.isEnd = true;//for循环结束,最后一个节点是叶节点
}
public Trie searPrefix(String word) {
Trie p = this;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
int index = ch - 'a';
//当前节点不存在
if (p.children[index] == null) return null;
p = p.children[index];
}
return p;//遍历结束
}
public boolean search(String word) {
Trie p = searPrefix(word);
//对于search,要遍历到叶节点才返回true
return p != null && p.isEnd;
}
public boolean startWith(String word) {
//对于startWith,不需要遍历到叶节点
return searPrefix(word) != null;
}
}