剑指 16 数值的整数次方

65 篇文章 1 订阅

剑指 16 数值的整数次方

原题目

实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。

示例 1:

输入: 2.00000, 10
输出: 1024.00000

示例 2:

输入: 2.10000, 3
输出: 9.26100

考查知识点

位运算代替乘除法

对代码完整性的测试

一份基本完美的代码应该具备以下三点才能称为一份完整的代码:

  1. 完成基本功能(必须)
  2. 边界值能够被正确处理(努力)
  3. 对非法输入进行适当的处理(争取)

当考虑代码中可能会出错时,一般要加入查错机制帮助自己能够定位错误,常用的查错主要是以下三种:

  1. 特殊的函数返回值
  2. 设置专用的全局变量,通过检查该变量的状态来确定是否出错
  3. 异常

自己的第一遍解法

对于这道题,第一想到的是要建立不同情况的测试用例,比如底数是正数、零、负数的情况,由于是对自己的乘方,因此底数为正数和负数都一样。再来看指数,指数同样有正数、零、负数,本题限制指数为32位整数,因此不用考虑小数。下面结合底数与指数来看,0的负数幂是不存在的,所有数的0次幂都是1,这是两种特殊情况。


初级解法

剑指的初级解法如下,使用循环进行乘方的计算,虽然简单明了但是耗时非常大,力扣上是不能通过的

class Solution {
public:
    //x:底数,n:幂
    const double eps = 1e-6;
    double myPow(double x, int n) {
        if (fabs(x-0.0) < eps && n < 0) //0的负数幂不存在
            return -1;

        long long absExponent = n;
        if(n < 0)       //负数幂
            absExponent = -absExponent;
        double res = PowerWithUnsignedExponent(x, absExponent);
        if (n < 0)
            res = 1.0 / res;
        return res;
    }

    //计算x(x>=0)的幂:循环法
    double PowerWithUnsignedExponent(double base, unsigned int exponent)
    {
        double result = 1.0;
        for (int i=1; i<=exponent; ++i)
            result *= base;

        return result;
    }
};

这里值得注意的是C++中对于浮点数的比较是存在一个精度问题的,比如两个double类型的数值在比较就不能使用运算符==,必须规定一个门限epsfabs()用于求传入参数的绝对值,当两个浮点数之差的绝对值小于该门限时,认为这两个浮点数相等。


好的解法

这里上一个快速幂解法,剑指上给出来的是用递归实现快速幂,简言之就是x的9次方可以表示成x的4次方* x的4次方* x,然后x的4次方可以表示成x的2次方 * x的2次方,这样就避免了由x一步步乘自身才到9次方。快速幂解法的效率能够通过力扣。如果是底数的奇数幂,最后还要乘上一个底数,如果是偶数幂,就可以直接递归分解到最后。

class Solution {
public:
    //x:底数,n:幂
    const double eps = 1e-6;
    double myPow(double x, int n) {
        if (fabs(x-0.0) < eps && n < 0) //0的负数幂不存在
            return -1;

        long long absExponent = n;
        if(n < 0)       //负数幂
            absExponent = -absExponent;
        double res = PowerwithUnsignedExponent(x, absExponent);
        if (n < 0)
            res = 1.0 / res;
        return res;
    }
    
    //快速幂:递归
    double PowerwithUnsignedExponent(double base, long long exponent)
    {
        if (exponent == 0) return 1;
        if (exponent == 1) return base;

        double res = PowerwithUnsignedExponent(base, exponent>>1);  //计算的是偶数次幂
        res *= res;
        if ((exponent & 0x1) == 1)
            res *= base;

        return res;
    }

};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值