剑指 16 数值的整数次方
原题目
实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
考查知识点
位运算代替乘除法
对代码完整性的测试
一份基本完美的代码应该具备以下三点才能称为一份完整的代码:
- 完成基本功能(必须)
- 边界值能够被正确处理(努力)
- 对非法输入进行适当的处理(争取)
当考虑代码中可能会出错时,一般要加入查错机制帮助自己能够定位错误,常用的查错主要是以下三种:
- 特殊的函数返回值
- 设置专用的全局变量,通过检查该变量的状态来确定是否出错
- 异常
自己的第一遍解法
对于这道题,第一想到的是要建立不同情况的测试用例,比如底数
是正数、零、负数的情况,由于是对自己的乘方,因此底数为正数和负数都一样。再来看指数
,指数同样有正数、零、负数,本题限制指数为32位整数,因此不用考虑小数。下面结合底数与指数来看,0的负数幂是不存在的,所有数的0次幂都是1,这是两种特殊情况。
初级解法
剑指的初级解法如下,使用循环进行乘方的计算,虽然简单明了但是耗时非常大,力扣上是不能通过的
class Solution {
public:
//x:底数,n:幂
const double eps = 1e-6;
double myPow(double x, int n) {
if (fabs(x-0.0) < eps && n < 0) //0的负数幂不存在
return -1;
long long absExponent = n;
if(n < 0) //负数幂
absExponent = -absExponent;
double res = PowerWithUnsignedExponent(x, absExponent);
if (n < 0)
res = 1.0 / res;
return res;
}
//计算x(x>=0)的幂:循环法
double PowerWithUnsignedExponent(double base, unsigned int exponent)
{
double result = 1.0;
for (int i=1; i<=exponent; ++i)
result *= base;
return result;
}
};
这里值得注意的是C++中对于浮点数的比较是存在一个精度问题的,比如两个double
类型的数值在比较就不能使用运算符==
,必须规定一个门限eps
,fabs()
用于求传入参数的绝对值,当两个浮点数之差的绝对值小于该门限时,认为这两个浮点数相等。
好的解法
这里上一个快速幂解法,剑指上给出来的是用递归实现快速幂,简言之就是x的9次方
可以表示成x的4次方
* x的4次方
* x
,然后x的4次方
可以表示成x的2次方
* x的2次方
,这样就避免了由x一步步乘自身才到9次方。快速幂解法的效率能够通过力扣。如果是底数的奇数幂,最后还要乘上一个底数,如果是偶数幂,就可以直接递归分解到最后。
class Solution {
public:
//x:底数,n:幂
const double eps = 1e-6;
double myPow(double x, int n) {
if (fabs(x-0.0) < eps && n < 0) //0的负数幂不存在
return -1;
long long absExponent = n;
if(n < 0) //负数幂
absExponent = -absExponent;
double res = PowerwithUnsignedExponent(x, absExponent);
if (n < 0)
res = 1.0 / res;
return res;
}
//快速幂:递归
double PowerwithUnsignedExponent(double base, long long exponent)
{
if (exponent == 0) return 1;
if (exponent == 1) return base;
double res = PowerwithUnsignedExponent(base, exponent>>1); //计算的是偶数次幂
res *= res;
if ((exponent & 0x1) == 1)
res *= base;
return res;
}
};