剑指 32 从上到下打印二叉树【宽度/广度优先遍历】【BFS】

65 篇文章 1 订阅

剑指 32 - I. 从上到下打印二叉树

原题目

从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印。

例如:
给定二叉树: [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

考查知识点

BFS,宽度优先搜索(或广度优先搜索)


自己的第一遍解法

首先自己的想法虽然思路畅通,但是不知道递归解决curNode的切换那里怎么写。

一开始想用递归解决这个问题,规律比较明显,当前节点指针curNode指向示例中的3时,对curNode及其子节点的输出其实就是一个小型前序遍历(根-左-右),改变curNode的指向(从3->9,9->20)其实也是一个小型的前序遍历。比如下面这个规律:

//假设f()为打印子节点的函数
//          当前结果数组
  f(3)    [3,9,20]
  f(9)    [3,9,20]
  f(20)   [3,9,20,15,7]
  f(15)   [3,9,20,15,7]
  f(7)    [3,9,20,15,7]
class Solution_01 {//递归没解出来,curNode节点不知道怎么递归切换
public:
    vector<int> levelOrder(TreeNode* root) {
        if (root == nullptr)
            return vector<int> {};

        vector<int> res = {root->val};
        TreeNode* curNode = root;

        addSonNode(curNode, res);
        addSonNode(curNode->left, res);
        addSonNode(curNode->right, res);

    }

    void addSonNode(TreeNode* root, vector<int>& tmpRes)
    {
        if (root->left)
            tmpRes.push_back(root->left->val);
        if (root->right)
            tmpRes.push_back(root->right->val);
    }
};

好的解法

剑指书上没有使用递归,使用了额外的空间-队列,当输出当前节点curNode的val时,将curNode的两个子节点加入队列,然后不断输出队列首节点,这一个规律与上面想用递归解出来反映的规律是一样的,但是剑指的方法就好在不用考虑curNode的切换问题。

class Solution {
public:
    vector<int> levelOrder(TreeNode* root) {
        if (root == nullptr)
            return vector<int> {};

        vector<int> res;//记录从上到下的节点顺序
        deque<TreeNode*> d;//先入先出节点队列
        d.push_back(root);

        while (!d.empty())
        {
            TreeNode* curNode = d.front();
            res.push_back(curNode->val);
            d.pop_front();//虽然队列首节点更新,但是curNode指针在本次循环的指向不变
            if (curNode->left)
                d.push_back(curNode->left);
            if (curNode->right)
                d.push_back(curNode->right);

        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值