剑指 32 - I. 从上到下打印二叉树
原题目
从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印。
例如:
给定二叉树: [3,9,20,null,null,15,7]
,
3
/ \
9 20
/ \
15 7
考查知识点
BFS,宽度优先搜索(或广度优先搜索)
自己的第一遍解法
首先自己的想法虽然思路畅通,但是不知道递归解决curNode
的切换那里怎么写。
一开始想用递归解决这个问题,规律比较明显,当前节点指针curNode
指向示例中的3
时,对curNode
及其子节点的输出其实就是一个小型前序遍历(根-左-右),改变curNode
的指向(从3->9,9->20)其实也是一个小型的前序遍历。比如下面这个规律:
//假设f()为打印子节点的函数
// 当前结果数组
f(3) [3,9,20]
f(9) [3,9,20]
f(20) [3,9,20,15,7]
f(15) [3,9,20,15,7]
f(7) [3,9,20,15,7]
class Solution_01 {//递归没解出来,curNode节点不知道怎么递归切换
public:
vector<int> levelOrder(TreeNode* root) {
if (root == nullptr)
return vector<int> {};
vector<int> res = {root->val};
TreeNode* curNode = root;
addSonNode(curNode, res);
addSonNode(curNode->left, res);
addSonNode(curNode->right, res);
}
void addSonNode(TreeNode* root, vector<int>& tmpRes)
{
if (root->left)
tmpRes.push_back(root->left->val);
if (root->right)
tmpRes.push_back(root->right->val);
}
};
好的解法
剑指书上没有使用递归,使用了额外的空间-队列,当输出当前节点curNode
的val时,将curNode
的两个子节点加入队列,然后不断输出队列首节点,这一个规律与上面想用递归解出来反映的规律是一样的,但是剑指的方法就好在不用考虑curNode
的切换问题。
class Solution {
public:
vector<int> levelOrder(TreeNode* root) {
if (root == nullptr)
return vector<int> {};
vector<int> res;//记录从上到下的节点顺序
deque<TreeNode*> d;//先入先出节点队列
d.push_back(root);
while (!d.empty())
{
TreeNode* curNode = d.front();
res.push_back(curNode->val);
d.pop_front();//虽然队列首节点更新,但是curNode指针在本次循环的指向不变
if (curNode->left)
d.push_back(curNode->left);
if (curNode->right)
d.push_back(curNode->right);
}
return res;
}
};