pytorch新手入门:认识+理解+实战

某天在微博上看到@爱可可-爱生活 老师推了Pytorch的入门教程,就顺手下来翻了。虽然完工的比较早但是手头菜的没有linux服务器没法子运行结果。开学以来终于在师兄的机器装上了Torch,中间的运行结果也看明白了。所以现在发一下这篇两周之前做的教程翻译。

首先惯例上原文链接,特别的原作者是以ipyhton notebook来写的教程,运行相当的方便。但带来的问题就是翻译作为专栏文章的效果实在是太差。

原文档链接在此:Deep Learning with PyTorch.ipynb

特别注明:原教程是以ipython notebook写就,因此代码部分非常零散,我在翻译的过程中将部分代码进行了整合以保证文章的紧凑,翻译的目的是将教程说明部分表达完整,具体的代码运行步骤请移步Github下载源文件进行代码的运行。

以下是教程的主体部分:

本教程的目的:

  • 更高层级地理解PyTorch的Tensor库以及神经网络。
  • 训练一个小的神经网络来对图像进行分类。

本教程以您拥有一定的numpy基础的前提下展开

Note: 务必确认您已经安装了 torchtorchvision 两个包。

PyTorch是什么?

这是一个基于Python的科学计算包,其旨在服务两类场合:

  • 替代numpy发挥GPU潜能
  • 一个提供了高度灵活性和效率的深度学习实验性平台

我们开搞

Tensors

Tensors和numpy中的ndarrays较为相似, 与此同时Tensor也能够使用GPU来加速运算。

from __future__ import print_function
import torch
x = torch.Tensor(5, 3)  # 构造一个未初始化的5*3的矩阵
x = torch.rand(5, 3)  # 构造一个随机初始化的矩阵
x # 此处在notebook中输出x的值来查看具体的x内容
x.size()

#NOTE: torch.Size 事实上是一个tuple, 所以其支持相关的操作*
y = torch.rand(5, 3)

#此处 将两个同形矩阵相加有两种语法结构
x + y # 语法一
torch.add(x, y) # 语法二

# 另外输出tensor也有两种写法
result = torch.Tensor(5, 3) # 语法一
torch.add(x, y, out=result) # 语法二
y.add_(x) # 将y与x相加

# 特别注明:任何可以改变tensor内容的操作都会在方法名后加一个下划线’
# 例如:x.copy(y), x.t_(), 这俩都会改变x的值。

#另外python中的切片操作也是资次的。
x[:,1] #这一操作会输出x矩阵的第二列的所有值

阅读材料

100+ Tensor的操作,包括换位、索引、切片、数学运算、线性算法和随机数等等。

详见:torch - PyTorch 0.1.9 documentation

Numpy桥

将Torch的Tensor和numpy的array相互转换简直就是洒洒水啦。注意Torch的Tensor和numpy的array会共享他们的存储空间,修改一个会导致另外的一个也被修改。

# 此处演示tensor和numpy数据结构的相互转换
a = torch.ones(5)
b = a.numpy()

# 此处演示当修改numpy数组之后,与之相关联的tensor也会相应的被修改
a.add_(1)
print(a)
print(b)

# 将numpy的Array转换为torch的Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

# 另外除了CharTensor之外,所有的tensor都可以在CPU运算和GPU预算之间相互转换
# 使用CUDA函数来将Tensor移动到GPU上
# 当CUDA可用时会进行GPU的运算
if torch.cuda.is_available():
x = x.cuda()
y = y.cuda()
x + y

PyTorch中的神经网络

接下来介绍pytorch中的神经网络部分。PyTorch中所有的神经网络都来自于autograd包

首先我们来简要的看一下,之后我们将训练我们第一个的神经网络。

Autograd: 自动求导

autograd 包提供Tensor所有操作的自动求导方法。
这是一个运行时定义的框架,这意味着你的反向传播是根据你代码运行的方式来定义的,因此每一轮迭代都可以各不相同。

以这些例子来讲,让我们用更简单的术语来看看这些特性。

autograd.Variable 这是这个包中最核心的类。 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作。一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度。

你可以通过属性 .data 来访问原始的tensor,而关于这一Variable的梯度则集中于 .grad 属性中。

还有一个在自动求导中非常重要的类 Function。

Variable 和 Function 二者相互联系并且构建了一个描述整个运算过程的无环图。每个Variable拥有一个 .creator 属性,其引用了一个创建Variable的 Function。(除了用户创建的Variable其 creator 部分是 None)。

如果你想要进行求导计算,你可以在Variable上调用.backward()。 如果Variable是一个标量(例如它包含一个单元素数据),你无需对backward()指定任何参数,然而如果它有更多的元素,你需要指定一个和tensor的形状想匹配的grad_output参数。

from torch.autograd import Variable
x = Variable(torch.ones(2, 2), requires_grad = True)
y = x + 2
y.creator

# y 是作为一个操作的结果创建的因此y有一个creator
z = y y 3
out = z.mean()

# 现在我们来使用反向传播
out.backward()

# out.backward()和操作out.backward(torch.Tensor([1.0]))是等价的
# 在此处输出 d(out)/dx
x.grad

最终得出的结果应该是一个全是4.5的矩阵。设置输出的变量为o。我们通过这一公式来计算:

[公式][公式][公式],因此,[公式],最后有[公式]

你可以使用自动求导来做许多疯狂的事情。
x = torch.randn(3)
x = Variable(x, requires_grad = True)
y = x 2
while y.data.norm() < 1000:
y = y 2
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
x.grad

阅读材料

你可以在这读更多关于Variable 和 Function的文档: pytorch.org/docs/autograd.html

神经网络

使用 torch.nn 包可以进行神经网络的构建。

现在你对autograd有了初步的了解,而nn建立在autograd的基础上来进行模型的定义和微分。

nn.Module中包含着神经网络的层,同时forward(input)方法能够将output进行返回。

举个例子,来看一下这个数字图像分类的神经网络。

这是一个简单的前馈神经网络。 从前面获取到输入的结果,从一层传递到另一层,最后输出最后结果。

一个典型的神经网络的训练过程是这样的:

  • 定义一个有着可学习的参数(或者权重)的神经网络
  • 对着一个输入的数据集进行迭代:
    • 用神经网络对输入进行处理
    • 计算代价值 (对输出值的修正到底有多少)
    • 将梯度传播回神经网络的参数中
    • 更新网络中的权重
      • 通常使用简单的更新规则: weight = weight + learning_rate * gradient



让我们来定义一个神经网络:

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
def init(self):
super(Net, self).init()
self.conv1 = nn.Conv2d(1, 6, 5) # 1 input image channel, 6 output channels, 5x5 square convolution kernel
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(1655, 120) # an affine operation: y = Wx + b
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span> <span class="c1"># Max pooling over a (2, 2) window</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)),</span> <span class="mi">2</span><span class="p">)</span> <span class="c1"># If the size is a square you can only specify a single number</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_flat_features</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
    <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">x</span>

<span class="k">def</span> <span class="nf">num_flat_features</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
    <span class="n">size</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">()[</span><span class="mi">1</span><span class="p">:]</span> <span class="c1"># all dimensions except the batch dimension</span>
    <span class="n">num_features</span> <span class="o">=</span> <span class="mi">1</span>
    <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">size</span><span class="p">:</span>
        <span class="n">num_features</span> <span class="o">*=</span> <span class="n">s</span>
    <span class="k">return</span> <span class="n">num_features</span>

net = Net()
net

‘’'神经网络的输出结果是这样的
Net (
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear (400 -> 120)
(fc2): Linear (120 -> 84)
(fc3): Linear (84 -> 10)
)
‘’'

仅仅需要定义一个forward函数就可以了,backward会自动地生成。

你可以在forward函数中使用所有的Tensor中的操作。

模型中可学习的参数会由net.parameters()返回。

params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1’s .weight

input = Variable(torch.randn(1, 1, 32, 32))
out = net(input)
‘’‘out 的输出结果如下
Variable containing:
-0.0158 -0.0682 -0.1239 -0.0136 -0.0645 0.0107 -0.0230 -0.0085 0.1172 -0.0393
[torch.FloatTensor of size 1x10]
‘’’

net.zero_grad() # 对所有的参数的梯度缓冲区进行归零
out.backward(torch.randn(1, 10)) # 使用随机的梯度进行反向传播

注意: torch.nn 只接受小批量的数据
整个torch.nn包只接受那种小批量样本的数据,而非单个样本。 例如,nn.Conv2d能够结构一个四维的TensornSamples x nChannels x Height x Width。
如果你拿的是单个样本,使用input.unsqueeze(0)来加一个假维度就可以了。

复习一下前面我们学到的:

  • torch.Tensor - 一个多维数组
  • autograd.Variable - 改变Tensor并且记录下来操作的历史记录。和Tensor拥有相同的API,以及backward()的一些API。同时包含着和张量相关的梯度。
  • nn.Module - 神经网络模块。便捷的数据封装,能够将运算移往GPU,还包括一些输入输出的东西。
  • nn.Parameter - 一种变量,当将任何值赋予Module时自动注册为一个参数。
  • autograd.Function - 实现了使用自动求导方法的前馈和后馈的定义。每个Variable的操作都会生成至少一个独立的Function节点,与生成了Variable的函数相连之后记录下操作历史。

到现在我们已经明白的部分:

  • 定义了一个神经网络。
  • 处理了输入以及实现了反馈。

仍然没整的:

  • 计算代价。
  • 更新网络中的权重。

一个代价函数接受(输出,目标)对儿的输入,并计算估计出输出与目标之间的差距。

nn package包中一些不同的代价函数.

一个简单的代价函数:nn.MSELoss计算输入和目标之间的均方误差。

举个例子:

output = net(input)
target = Variable(torch.range(1, 10)) # a dummy target, for example
criterion = nn.MSELoss()
loss = criterion(output, target)
‘’'loss的值如下
Variable containing:
38.5849
[torch.FloatTensor of size 1]
‘’'

现在,如果你跟随loss从后往前看,使用.creator属性你可以看到这样的一个计算流程图:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss

因此当我们调用loss.backward()时整个图通过代价来进行区分,图中所有的变量都会以.grad来累积梯度。

# For illustration, let us follow a few steps backward
print(loss.creator) # MSELoss
print(loss.creator.previous_functions[0][0]) # Linear
print(loss.creator.previous_functions[0][0].previous_functions[0][0]) # ReLU

‘’’
<torch.nn._functions.thnn.auto.MSELoss object at 0x7fe8102dd7c8>
<torch.nn._functions.linear.Linear object at 0x7fe8102dd708>
<torch.nn._functions.thnn.auto.Threshold object at 0x7fe8102dd648>
‘’’

# 现在我们应当调用loss.backward(), 之后来看看 conv1’s在进行反馈之后的偏置梯度如何
net.zero_grad() # 归零操作
print(‘conv1.bias.grad before backward’)
print(net.conv1.bias.grad)
loss.backward()
print(‘conv1.bias.grad after backward’)
print(net.conv1.bias.grad)

‘’’ 这些步骤的输出结果如下
conv1.bias.grad before backward
Variable containing:
0
0
0
0
0
0
[torch.FloatTensor of size 6]

conv1.bias.grad after backward
Variable containing:
0.0346
-0.0141
0.0544
-0.1224
-0.1677
0.0908
[torch.FloatTensor of size 6]
‘’'

现在我们已经了解如何使用代价函数了。

阅读材料

神经网络包中包含着诸多用于神经网络的模块和代价函数,带有文档的完整清单在这里: torch.nn - PyTorch 0.1.9 documentation

只剩下一个没学了:

  • 更新网络的权重

最简单的更新的规则是随机梯度下降法(SGD):

weight = weight - learning_rate * gradient

我们可以用简单的python来表示:

learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)

然而在你使用神经网络的时候你想要使用不同种类的方法诸如:SGD, Nesterov-SGD, Adam, RMSProp, etc.

我们构建了一个小的包torch.optim来实现这个功能,其中包含着所有的这些方法。 用起来也非常简单:

import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr = 0.01)

# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update

就是这样。

但你现在也许会想。

那么数据怎么办呢?

通常来讲,当你处理图像,声音,文本,视频时需要使用python中其他独立的包来将他们转换为numpy中的数组,之后再转换为torch.*Tensor。

  • 图像的话,可以用Pillow, OpenCV。
  • 声音处理可以用scipy和librosa。
  • 文本的处理使用原生Python或者Cython以及NLTK和SpaCy都可以。

特别的对于图像,我们有torchvision这个包可用,其中包含了一些现成的数据集如:Imagenet, CIFAR10, MNIST等等。同时还有一些转换图像用的工具。 这非常的方便并且避免了写样板代码。

本教程使用CIFAR10数据集。 我们要进行的分类的类别有:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。 这个数据集中的图像都是3通道,32x32像素的图片。


下面是对torch神经网络使用的一个实战练习。

训练一个图片分类器

我们要按顺序做这几个步骤:

  1. 使用torchvision来读取并预处理CIFAR10数据集
  2. 定义一个卷积神经网络
  3. 定义一个代价函数
  4. 在神经网络中训练训练集数据
  5. 使用测试集数据测试神经网络

1. 读取并预处理CIFAR10

使用torchvision读取CIFAR10相当的方便。

import torchvision
import torchvision.transforms as transforms

# torchvision数据集的输出是在[0, 1]范围内的PILImage图片。
# 我们此处使用归一化的方法将其转化为Tensor,数据范围为[-1, 1]

transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainset = torchvision.datasets.CIFAR10(root=’./data’, train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root=’./data’, train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = (‘plane’, ‘car’, ‘bird’, ‘cat’,
‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’)
‘’'注:这一部分需要下载部分数据集 因此速度可能会有一些慢 同时你会看到这样的输出

Downloading http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Extracting tar file
Done!
Files already downloaded and verified
‘’'

我们来从中找几张图片看看。

# functions to show an image
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1,2,0)))

# show some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
# print labels
print(’ ‘.join(%5s%classes[labels[j]] for j in range(4)))

结果是这样的:

2. 定义一个卷积神经网络

class Net(nn.Module):
def init(self):
super(Net, self).init()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(1655, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
    <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
    <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">16</span><span class="o">*</span><span class="mi">5</span><span class="o">*</span><span class="mi">5</span><span class="p">)</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
    <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">x</span>

net = Net()

3. 定义代价函数和优化器

criterion = nn.CrossEntropyLoss() # use a Classification Cross-Entropy loss
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

4. 训练网络

事情变得有趣起来了。 我们只需一轮一轮迭代然后不断通过输入来进行参数调整就行了。

for epoch in range(2): # loop over the dataset multiple times
<span class="n">running_loss</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainloader</span><span class="p">,</span> <span class="mi">0</span><span class="p">):</span>
    <span class="c1"># get the inputs</span>
    <span class="n">inputs</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span>
    
    <span class="c1"># wrap them in Variable</span>
    <span class="n">inputs</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">inputs</span><span class="p">),</span> <span class="n">Variable</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
    
    <span class="c1"># zero the parameter gradients</span>
    <span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
    
    <span class="c1"># forward + backward + optimize</span>
    <span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
    <span class="n">loss</span> <span class="o">=</span> <span class="n">criterion</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
    <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>        
    <span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
    
    <span class="c1"># print statistics</span>
    <span class="n">running_loss</span> <span class="o">+=</span> <span class="n">loss</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
    <span class="k">if</span> <span class="n">i</span> <span class="o">%</span> <span class="mi">2000</span> <span class="o">==</span> <span class="mi">1999</span><span class="p">:</span> <span class="c1"># print every 2000 mini-batches</span>
        <span class="k">print</span><span class="p">(</span><span class="s1">'[</span><span class="si">%d</span><span class="s1">, </span><span class="si">%5d</span><span class="s1">] loss: </span><span class="si">%.3f</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">running_loss</span> <span class="o">/</span> <span class="mi">2000</span><span class="p">))</span>
        <span class="n">running_loss</span> <span class="o">=</span> <span class="mf">0.0</span>

print(‘Finished Training’)
‘’'这部分的输出结果为
[1, 2000] loss: 2.212
[1, 4000] loss: 1.892
[1, 6000] loss: 1.681
[1, 8000] loss: 1.590
[1, 10000] loss: 1.515
[1, 12000] loss: 1.475
[2, 2000] loss: 1.409
[2, 4000] loss: 1.394
[2, 6000] loss: 1.376
[2, 8000] loss: 1.334
[2, 10000] loss: 1.313
[2, 12000] loss: 1.264
Finished Training
‘’'

我们已经训练了两遍了。 此时需要测试一下到底结果如何。

通过对比神经网络给出的分类和已知的类别结果,可以得出正确与否,如果预测的正确,我们可以将样本加入正确预测的结果的列表中。

好的第一步,让我们展示几张照片来熟悉一下。

dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ‘, ’ ‘.join(%5s%classes[labels[j]] for j in range(4)))

结果是这样的:


好的,接下来看看神经网络如何看待这几个照片。

outputs = net(Variable(images))

# the outputs are energies for the 10 classes.
# Higher the energy for a class, the more the network
# thinks that the image is of the particular class

# So, let’s get the index of the highest energy
_, predicted = torch.max(outputs.data, 1)

print('Predicted: ‘, ’ ‘.join(%5s% classes[predicted[j][0]] for j in range(4)))

‘’'输出结果为
Predicted: cat plane car plane
‘’'

结果看起来挺好。

看看神经网络在整个数据集上的表现结果如何。

correct = 0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()

print(‘Accuracy of the network on the 10000 test images: %d %% % (100 * correct / total))

‘’'输出结果为
Accuracy of the network on the 10000 test images: 54 %
‘’'

看上去这玩意输出的结果比随机整的要好,随机选择的话从十个中选择一个出来,准确率大概只有10%。

看上去神经网络学到了点东西。

嗯。。。那么到底哪些类别表现良好又是哪些类别不太行呢?

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i]
class_total[label] += 1

for i in range(10):
print(‘Accuracy of %5s : %2d %% % (classes[i], 100 * class_correct[i] / class_total[i]))

‘’'输出结果为
Accuracy of plane : 73 %
Accuracy of car : 70 %
Accuracy of bird : 52 %
Accuracy of cat : 27 %
Accuracy of deer : 34 %
Accuracy of dog : 37 %
Accuracy of frog : 62 %
Accuracy of horse : 72 %
Accuracy of ship : 64 %
Accuracy of truck : 53 %
‘’'

好吧,接下来该怎么搞了?

我们该如何将神经网络运行在GPU上呢?

在GPU上进行训练

就像你把Tensor传递给GPU进行运算一样,你也可以将神经网络传递给GPU。

这一过程将逐级进行操作,直到所有组件全部都传递到GPU上。

net.cuda()

‘’'输出结果为
Net (
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear (400 -> 120)
(fc2): Linear (120 -> 84)
(fc3): Linear (84 -> 10)
)
‘’'

记住,每一步都需要把输入和目标传给GPU。

   inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())

我为什么没有进行CPU运算和GPU运算的对比呢?因为神经网络实在太小了,其中的差距并不明显。

目标达成:

  • 在更高层级上理解PyTorch的Tensor库和神经网络。
  • 训练一个小的神经网络。

接下来我该去哪?


Trans by lawbda,edit in 2017.03.05 15:38

  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值