论二分的强大(bian tai)性

二分,是个很常见的算法, 它可以提高程序的效率,可能会由O(n ^2)变为O(n log n)。我举个例子,让大家看看二分的优化效果到底有多么的强大!
例:输入一个正整数n,求根号n的值(保留小数点后第五位)

//暴力算法:
#include <iostream>
#include <iomanip>
#include <cmath>
double n;
using namespace std;
int main()
{
	cin >> n;
	for(double i = 1.00; i <= n; i += 0.000001)
	{
		if(abs(i * i - n) <= 0.00001)//如果i的平方减去n的绝对值小于等于0.00001,即i和根号n之间差的比0.00001要小
		{
			cout << fixed << setprecision(5) << i;//输出答案,"fixed << setprecision(5) <<"是用来保留5位小数的
			return 0;//程序拜拜
		}
	}
}
//二分算法:
#include <iostream>
#include <iomanip>
double n, l, r, mid;//l是左指针,r是右指针,mid是中间值
using namespace std;
int main()
{
	cin >> n;
	r = n;//先给右指针赋一个最大值n
	while((r - l) >= 0.0000001)
	{
		mid = (l + r) / 2;//中间值 = (左指针 + 右指针) / 2
		if(mid * mid > n)//如果中间值的平方大于n,即中间值大于根号n
		{
			r = mid;//右指针移到中间
		}
		else//否则
		{
			l = mid;//左指针移到中间
		}
	}
	cout << fixed << setprecision(5) << mid;//输出答案,"fixed << setprecision(5) <<"是用来保留5位小数的
	return 0;//程序拜拜
}

对照两份代码,当n >= 200时, 暴力程序已经炸了。而二分代码,n都爆int了,程序还能很快的运行出来(先不说正确性)。看来,二分真的是很强大(bian tai)的!让我们一起学习二分吧!
小弟的第一篇文章,不喜勿喷。

《RSMA与速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **能评估**:分析系统吞吐量、误码率等能指标,对比不同策略的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值