问题描述
任何一个正整数都可以用2的幂次方表示。例如:
137=2的7次方+2的3次方+2的0次方
同时约定方次用括号来表示,即ab 可表示为a(b)。
由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:7= 2的2次方+2+2的0次方 (21用2表示)
3=2+2的0次方
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=2的10次方 +2的8次方 +2的5次方 +2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
输入包含一个正整数N(N<=20000),为要求分解的整数。
输出格式
程序输出包含一行字符串,为符合约定的n的0,2表示(在表示中不能有空格)
#include<stdio.h>
void f(int a)
{
int i=0,j,b[32],w,k;
if(a==0)
printf("0");
else if(a==2)printf("2");
else if(a==1)printf("2(0)");
else
{
while(a)
{b[i]=a%2;a=a/2;i++;} //得到a的二进制表示,存放在数组b中
w=i;k=0;j=0;
for(i=w-1;i>=0;i--)
if(b[i])k++; //k表示a二进制中1的个数
for(i=w-1;i>=0;i--) //遍历数组b
if(b[i])
{ j++;
if(i==1)printf("2");
else {printf("2(");f(i);printf(")");}
if(j!=k)printf("+");
}
}
}
int main()
{
int a;scanf("%d",&a);
f(a);
return 0;
}
主要知识:
递归、将十进制转换二进制表示
运行结果: