双线性插值的公式推导及用克莱姆法则求解方程组

双线性插值的核心思想:将二维插值拆解为 “沿 X 轴的一维线性插值” 和 “沿 Y 轴的一维线性插值” 两步,最终通过代数运算合并得到统一公式。

一、一维线性插值

若已知两点 (x1,y1​) 和 (x2​,y2),对任意点 x∈[x1,x2] 求y值,则根据两点求直线 斜率相同,得

整理成如下格式,得任意点的y值为:


(本质是 “加权平均”,权重与点到端点的距离成反比)

二、二维线性插值

  • 已知矩形网格的 4 个顶点坐标及对应的 Q 值:
    左上角 A(X0​,Y0​,Q00​)、右上角 B(X1​,Y0​,Q10​)、左下角 C(X0​,Y1​,Q01​)、右下角 D(X1​,Y1​,Q11​);
  • 目标:求网格内部任意点 P(X,Y) 的 Q 值 Q(X,Y)。
第一步:沿 X 轴方向,固定 Y=Y₀和 Y=Y₁分别做一维线性插值

将一维线性插值公式应用到二维网格的 X 方向:

    1. 固定 Y=Y₀(上边缘 A-B):求点 E(X,Y0​) 的 Q 值 Qx0​
此时 x 的范围是 [X0​,X1​],已知 A (X₀,Y₀,Q₀₀) 和 B (X₁,Y₀,Q₁₀),代入一维公式:

为简化书写,定义X 方向权重系数​,则,公式可改写为:
                                   (1)

    2.固定 Y=Y₁(下边缘 C-D):求点 F(X,Y1​) 的 Q 值 Qx1​(注:F和E的X值相同)
同理,已知 C (X₀,Y₁,Q₀₁) 和 D (X₁,Y₁,Q₁₁),代入一维公式并引入相同的

                                    (2)

第二步:沿 Y 轴方向,固定 X,对 Qx0和 QX1做一维线性插值

已得 “同一竖直线 X 上、Y₀和 Y₁两个高度” 的 Q 值(Qx0​和Qx1​);接下来利用E、F点的Q值沿 Y 轴插值,即可得到目标点 P (X,Y) 的 Q 值。

首先定义Y 方向权重系数,则
对 Qx0​(Y=Y₀)和 Qx1​(Y=Y₁)应用一维线性插值公式:                           (3)

第三步:合并公式,得到双线性插值的最终形式

将式 (1) 和式 (2) 代入式 (3),展开:

即为双线性插值的加权平均形式——目标点的Q值是4个顶点Q值的加权和,权重由点P到各顶点的相对位置决定(权重系数 ,∈[0,1],确保插值结果在4个顶点Q值的范围内)。

若进一步将 ​、 代入,可展开为含X、Y的多项式形式:

其中 a,b,c,d 是由4个系数,可由顶点坐标和Q值确定。(类似一维线性插值y=kx+b的k和b可由2点确定

三、利用双线性插值公式,及克莱姆法则解线性方程组

如上述,网格内 Q 值随 X、Y 坐标的变化遵循 “双线性函数关系”,即 可令Q (X,Y) 表示为一个包含 X、Y 线性项及交叉项的二元函数:

a,b,c,d 为4个待求系数,将4个网格顶点的坐标和Q值代入可得4个方程,写成矩阵的形式即:

其中4个已知的网格顶点坐标是(X1,Y1) (X2,Y2) (X3,Y3) (X4,Y4),4个点的Q值分别是Q1, Q2, Q3, Q4。

利用克莱姆法则求解:

先计算矩阵A的行列式为

克莱姆法则:若线性方程组的系数矩阵可逆(非奇异),即系数行列式 det(A)≠0,则线性方程组有唯一解,其解为

其中是把中第列元素对应地换成常数项()而其余各列保持不变所得到的行列式。

因此可直接得

得到了a,b,c,d则函数已知,带入任意(X,Y)即可得到该点的值Q(X,Y)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值