Opencv Numpy Uint8和float型对显示图像(cv.imshow)的影响

本文探讨了在OpenCV中使用Numpy处理图像时,数据类型为Uint8和float对显示效果的不同影响。当数据类型为float时,超过1的值会被放大导致图像过亮;而Uint8类型可能会导致数值溢出,高灰度值无法正确显示。解决方案包括在处理前将数据转换为Uint8,或者确保数据在0-1范围内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

发现两个问题

在昨天做实验的内容时,图像部分显示很奇怪,该亮的地方是黑色的(使用np.uint8后溢出导致的),以及不该亮的画面,出现过分亮的样子(矩阵中元素是浮点数导致的)

该亮的地方是黑色的

在这里插入图片描述

出现过分亮的样子

在这里插入图片描述

dtype = float

其实不仅是定义了类型,在进行矩阵运算的过程中,数值也很容易变成浮点数,如果没有对图像数据定义为uint8,会出现整个画面过白的情况,详情见cv.imshow使用手册内容:
cv.imshow
红圈部分说明了,如果数据是浮点数,cv.imshow会把数值×255,因为他默认你的浮点数位于0~1之间,×255后,就可以在0到255之间了。

但是如果我们的数据是大于1的呢?是20呢?也会×255,这样那个位置的灰度值必大于255,所以会显示成白色。

小小测验,定义四个区域,灰度值分别为0.0, 0.3,1.01, 15。对于前两个浮点数,×255后,仍在可显示范围内,对于1.01×255>255,应该显示白色,15.0×255>255,应该显示白色。实验验证如下:
在这里插入图片描述
解决办法就是,在定义图像时,把他的类型定义成np.uint8型,如下:

	img = np.ones([
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值