opencv-python数图实验(一)线性和非线性校正

本文档详细介绍了使用OpenCV-Python进行图像处理的实验,包括图像载入显示、RGB通道操作、锐化、伽马校正、亮度对比度线性校正以及HSV色彩空间转换。通过实验总结了处理过程中的关键点和技巧,如避免在循环中进行矩阵操作,预先定义窗口名称以简化管理,以及正确使用核函数。
摘要由CSDN通过智能技术生成

实验目标

  1. 完成图像的载入和显示
  2. RGB三通道分离并显示
  3. RGB三通道均衡化并显示
  4. 实现锐化
  5. 实现伽马校正(非线性)
  6. 实现对比度和亮度校正(线性)
  7. 色彩空间转化 RGB 2 HSV
  8. 伪彩色变化

实验效果

亮度对比度调整——线性校正(下图)
亮度对比度调整——线性校正
伽马校正——非线性校正(下图)
在这里插入图片描述

实验代码

# 关于版本
# numpy            1.16.6
# opencv-python    4.2.0.34
import cv2 as cv
import numpy as np
# 导入图像
srcImage = cv.imread('C:\\Users\\MRSANG\\Desktop\\CV_test\\test_1\\1.jpg')
if srcImage is None:
    print('Could not open or find the image: ')
    exit(0)
else:
    print('loading ... successfully')
cv.imshow('origin_win', srcImage)
# rgb三通道分离 并显示
ori_channel_r, ori_channel_g, ori_channel_b = cv.split(srcImage)

cv.imshow("ori_channel_r", ori_channel_r)
cv.imshow("ori_channel_g", ori_channel_g)
cv.imshow("ori_channel_b", ori_channel_b)

# rgb三通道均衡化
equ_channel_r = cv.equalizeHist(ori_channel_r)
equ_channel_g = cv.equalizeHist(ori_channel_g)
equ_channel_b = cv.equalizeHist(ori_channel_b)
equ_Image = cv.merge((equ_channel_r, equ_channel_g, equ_channel_b))
# 均衡化显示
cv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值