旋转图像 顺时针与逆时针方法

48. 旋转图像

给定一个 × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]

输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]

输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

示例 3

输入:matrix = [[1]]

输出:[[1]]

示例 4

输入:matrix = [[1,2],[3,4]]

输出:[[3,1],[4,2]]

思路:

  旋转矩阵有两类解决办法,但是每一类方法都不是一下子可以想出来的,还是说要对套路有个印象。

  第一类是常规办法,我们得知道顺时针旋转矩阵等价于:先把矩阵转置,再每一行倒置。知道这一点后,再对矩阵操作就可以了。

  第二类方法,用了pythonzip操作,zip操作是一个对于列表进行压缩或者合并的操作。如对于给定矩阵:matrix = [[1,2],[3,4]],我们使用zip(*matrix),可以得到[(1,3),(2,4)]

    通过一定的实践后,直接上结论:

  逆时针旋转:matrix[:] = zip(*matrix)[::-1]  先zip,再逆序

  顺时针旋转:matrix[:] = zip(*matrix[::-1])  先逆序,再zip

注意:zip 方法在 Python 2 Python 3 中的不同:在 Python 3.x 中为了减少内存,zip() 返回的是一个对象。如需展示列表,需手动 list() 转换。

    即python3中,一般是list(zip())配合使用。

代码:

1

class Solution(object):

    def rotate(self, matrix):

        #法1:三次逆时针 等于一次顺时针

        for i in range(3):

            #一次逆时针,先zip再逆序

            matrix[:]=zip(*matrix)[::-1]#原地修改 加上[:]

2

class Solution(object):

    def rotate(self, matrix):

        #一次顺时针 先逆序 再zip

        matrix[:]=list(zip(*matrix[::-1]))

3

class Solution(object):

    def rotate(self, matrix):

        row,col=len(matrix),len(matrix[0])

        for i in range(row):

            for j in range(i+1,col):

                matrix[i][j],matrix[j][i]=matrix[j][i],matrix[i][j]

        for i in range(row):

            matrix[i]=matrix[i][::-1]

小结:

  注意,这个题也是要求我们原地修改矩阵,所以要用切片来完成。

  法3应该是我们优先采用的标准做法,中规中矩的实现。

  法12可以作为扩展和炫技使用~

逆时针输出通常是指在一个二维数组(如矩形网格)中按照逆时针方向遍历并输出所有元素的过程。这里我们假设有一个 `m x n` 的矩阵,从最外层开始逐圈按逆时针顺序读取各元素直到整个矩阵都被访问过为止。 下面是一个简单的C++示例代码,它演示了如何实现这样一个功能: ```cpp #include <iostream> #include <vector> using namespace std; // 函数用于逆时针打印矩阵中的值 void printAntiClockwise(const vector<vector<int>>& matrix) { if (matrix.empty()) return; int top = 0, bottom = matrix.size() - 1; int left = 0, right = matrix[0].size() - 1; while (top <= bottom && left <= right) { // 左下到左上 for (int i = bottom; i >= top; --i) cout << matrix[i][left] << ' '; left++; // 右上到左上 for (int i = left; i <= right; ++i) cout << matrix[top][i] << ' '; top++; // 右下到右上 if (top <= bottom) { // 确保不是单行的情况 for (int i = top; i <= bottom; ++i) cout << matrix[i][right] << ' '; right--; } // 左下到右下 if (left <= right) { // 确保不是单列的情况 for (int i = right; i >= left; --i) cout << matrix[bottom][i] << ' '; bottom--; } } } int main(){ vector<vector<int>> matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; cout << "原始矩阵:\n"; for(auto& row : matrix){ for(int val : row) cout << val << "\t"; cout << endl; } cout << "\n逆时针输出的结果是:\n"; printAntiClockwise(matrix); return 0; } ``` 在这个例子中,我们首先设置了四个边界变量 (`top`, `bottom`, `left`, 和 `right`) 来界定每次迭代时待处理区域的位置。然后在每个循环周期里分别沿着四条边进行移动,并调整相应的边界条件以便进入下一个内部层次继续同样的过程直至完成全部数据的输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JunanP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值