最长递增子序列 动态规划

300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]输出:4解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]输出:1

思路:

  如果前面动态规划题做多了,这种数组题长得就像是用动态规划来解决的问题,因为它涉及到了“子序列”、“最长”之类的名词。所以直接说如何用动态规划来解决吧。对于dp数组的定义非常简单,和之前写过的都十分类似,dp[i]就代表以i位置结尾的最长递增子序列。看又是“以……结尾”的定义形式。

  但这一dp数组的状态转移方程并不算太简单,大多数情况下我们只需要写一次for就可以从头到尾生成出整个dp,但这一题我们需要写两层循环,具体原因就是因为当我们生成dp[i]时,不能只继承于dp[i-1],因为我们需要考虑它相对于之前的所有数据来说是不是递增的,即可能继承于之前所有数据。所以:在写到dp[i]时,我们还需要加上for j in range(i):来逐一判断if nums[i]>nums[j]。具体状态转移方程就是:dp[i] = max(dp[i],dp[j]+1),dp[i]通过不断比较得出继承于之前的哪一个值可以得到最大结果。

代码:

class Solution(object):

    def lengthOfLIS(self, nums):

        lenth = len(nums)#获得数组长度

        dp = [1]*lenth#初始化dp数组,用1来初始化即可

        #dp[i]表示以i结尾的最长递增子序列

        for i in range(1,lenth):#dp[0]就是1了,从下标1开始遍历

            for j in range(i):#再套一层,遍历i之前的位置

                if nums[i]>nums[j]:#如果i位置比j大,则可以成递增序列

                    dp[i] = max(dp[i],dp[j]+1)#比较与更新

        return max(dp)

小结:

  这道题是用dp+两层循环的状态转移方程来解决,dp的定义形式是比较常见的。最后 因为我们也并不知道以谁结尾会得到最长递增子序列,所以直接返回对dp取max的值即可。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JunanP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值