请你将一些箱子装在 一辆卡车 上。给你一个二维数组 boxTypes ,其中 boxTypes[i] = [numberOfBoxesi,
numberOfUnitsPerBoxi] :
- numberOfBoxesi 是类型 i 的箱子的数量。
- numberOfUnitsPerBoxi 是类型 i 每个箱子可以装载的单元数量。
- 整数 truckSize 表示卡车上可以装载 箱子 的 最大数量 。只要箱子数量不超过 truckSize ,你就可以选择任意箱子装到卡车上。
返回卡车可以装载 单元 的 最大 总数。
示例 1:
输入:boxTypes = [[1,3],[2,2],[3,1]], truckSize = 4 输出:8 解释:箱子的情况如下:
- 1 个第一类的箱子,里面含 3 个单元。
- 2 个第二类的箱子,每个里面含 2 个单元。
- 3 个第三类的箱子,每个里面含 1 个单元。 可以选择第一类和第二类的所有箱子,以及第三类的一个箱子。 单元总数 = (1 * 3) + (2 * 2) + (1 * 1) = 8 示例 2:
输入:boxTypes = [[5,10],[2,5],[4,7],[3,9]], truckSize = 10 输出:91
解题思路:
相当简单,尽多的拿尽多的装!
- STEP1 排序排序 贪心贪心 仅装的多的箱子拿
- STEP2 开始装!
为了夯实基础,少用sort排序,练习冒泡!
class Solution(object):
def maximumUnits(self, boxTypes, truckSize):
"""
:type boxTypes: List[List[int]]
:type truckSize: int
:rtype: int
"""
l = len(boxTypes) - 1
for i in range(len(boxTypes)):
for j in range(l-i):
if boxTypes[j][1] < boxTypes[j + 1][1]:
boxTypes[j], boxTypes[j+1] = boxTypes[j+1], boxTypes[j]
max_sum = 0
box_num = 0
for i in range(len(boxTypes)):
box_num = box_num + boxTypes[i][0]
if box_num >= truckSize:
less_box = truckSize - box_num + boxTypes[i][0]
max_sum = max_sum + boxTypes[i][1] * less_box
return max_sum
else:
max_sum = max_sum + boxTypes[i][1]*boxTypes[i][0]
return max_sum