HDU 2255 奔小康赚大钱 (km算法)

KM算法是解决二分图最优匹配。

KM算法博客:https://blog.csdn.net/chenshibo17/article/details/79933191

(转)

【KM算法及其具体过程】
(1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边
(2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个 匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所 有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方 点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
(3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;
(4) 增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的 数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则 对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):
<1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);
<2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;
<3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;
<4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。
这 样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也 就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。
(5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;
(6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶 标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开 始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修 改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d

贴上我的代码:

#include <bits/stdc++.h>
 
using namespace std;
 
const int maxn = 305,inf = 2e9+10;
 
int w[maxn][maxn],n;
int nxt[maxn];
int x[maxn],y[maxn];
int L[maxn],R[maxn];
int slack[maxn];
 
bool dfs(int i)
{
	L[i] = 1;
	for(int j=1;j<=n;j++)
	{
		if(R[j])continue;
		int gap = x[i] + y[j] - w[i][j];
		if(gap == 0)
		{
			R[j] = 1;
			if(!nxt[j] || dfs(nxt[j]))
			{
				nxt[j] = i;
				return true;
			}
		}
		else slack[j] = min(slack[j],gap);
	}
	return false;
}
 
void updata()
{
	int d = inf;
	for(int i=1;i<=n;i++)
	if(!R[i])d = min(d,slack[i]);
	
	for(int i=1;i<=n;i++)
	{
		if(L[i])x[i] -= d;
		if(R[i])y[i] += d;
		else slack[i] -= d;
	}
}
void KM()
{
	for(int i=1;i<=n;i++)
	{
		x[i] = y[i] = nxt[i] = 0;
		for(int j=1;j<=n;j++)
		x[i] = max(x[i],w[i][j]);
	}
	
	for(int i=1;i<=n;i++)
	{
		fill(slack+1,slack+1+n,inf);
		for(;;) 
		{
			memset(L,0,sizeof(L));
            memset(R,0,sizeof(R));
			if(dfs(i))break;
			updata();
		}
	}
	int ans = 0;
	for(int i=1;i<=n;i++)
	ans += w[nxt[i]][i];
	
	printf("%d\n",ans);
}
 
int main()
{
	while(~scanf("%d",&n))
	{
		for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)scanf("%d",&w[i][j]);
		KM();
	}
	return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值