数据结构与算法学习笔记六---查找算法

1. 查找算法介绍

在java中,我们常用的查找有四种:

  1. 顺序(线性)查找
  2. 二分查找/折半查找
  3. 插值查找
  4. 斐波那契查找

2. 线性查找算法

2.1 线性查找代码实现
public class SeqSearch {

    public static void main(String[] args) {
        int arr[] = {1, 9, 11, -1, 34, 89};
        int index = seqSearch(arr, 11);
        if(index == -1) {
            System.out.println("can't find it");
        } else {
            System.out.println("find it ,it's location is " + index);
        }
    }

    /**
     * 这里我们实现的线性查找是找到 一个 满足条件的值,就返回
     * @param arr 需要进行查找的数组
     * @param value 需要查找的值
     * @return 返回该值在数组中的位置
     */
    public static int seqSearch(int[] arr, int value) {
        // 线性查找是逐一比对,发现有相同值,就返回下标
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == value){
                return i;
            }
        }
        return -1;
    }   
}

3. 二分查找算法

3.1 介绍
  1. 前提必须是一个有序数组,才能使用二分查找。
3.2 二分查找思路分析
  1. 首先确定该数组的中间的下标 mid = (left + right)/ 2
  2. 然后让需要查找的数 findVal 和 arr[mid] 比较
    2.1 findVal > arr[mid],说明你要查找的数在 mid 的右边,因此需要递归的向右查找
    2.2 findVal > arr[mid],说明你要查找的数在 mid 的左边,因此需要递归的向左查找
    2.3 findVal == arr[mid] 说明找到,就返回

//什么时候我们需要结束递归
1.找到就结束递归
3. 递归完整个数组,仍然没有找到 findVal,也需要结束递归 当 left > right 就需要退出。

3.3 二分查找代码实现
// 注意:使用二分查找的前提是:该数组是有序的
public class BinarySearch {
    
    public static void main(String[] args) {
        int arr[] = {1, 8, 10, 89, 1000, 1000, 1234};
        // int resIndex = binarySearch(arr, 0, arr.length - 1, 123);
        // if(resIndex == -1) {
        //     System.out.println("can't find it");
        // } else {
        //     System.out.println("find it ,it's location is " + resIndex);
        // }

        List resIndexList = binarySearch2(arr, 0, arr.length - 1, 1000);
        System.out.println("resIndexList=" + resIndexList);
    }

    /**
     * 
     * @param arr 数组
     * @param left 左边的索引
     * @param right 右边的索引
     * @param findVal 要查找的值
     * @return 如果找到就返回下标,如果没有找到,就返回 -1
     * 问题:如果有重复的只能找到第一个
     */
    public static int binarySearch(int[] arr, int left, int right, int findVal) {

        // 当 left > right 时,说明递归整个数组,但是没有找到
        if(left > right) {
            return -1;
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if(findVal > midVal) { //向右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { //向左递归
            return binarySearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }
    }

        /**
     * 
     * @param arr 数组
     * @param left 左边的索引
     * @param right 右边的索引
     * @param findVal 要查找的值
     * @return 如果找到就返回下标,如果没有找到,就返回 空的ArrayList
     */
    public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {

        // 当 left > right 时,说明递归整个数组,但是没有找到
        if(left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if(findVal > midVal) { //向右递归
            return binarySearch2(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { //向左递归
            return binarySearch2(arr, left, mid - 1, findVal);
        } else {
            // 思路分析:
            // 1. 在找到mid 索引值,不要马上返回
            // 2. 向 mid 索引值的左边扫描,将所有满足 1000 的元素的下标,加入到集合ArrayList中
            // 3. 向 mid 索引值的右边扫描,将所有满足 1000 的元素的下标,加入到集合ArrayList中
            // 4. 将 ArrayList 返回

            List<Integer> resIndexlist = new ArrayList<Integer>();
            // 向 mid 索引值的左边扫描。将所有满足 1000 的元素的下标,加入到集合 ArrayList中
            int temp = mid - 1;
            while(true) {
                if (temp < 0 || arr[temp] != findVal) {
                    break;
                }
                // 否则,就 temp 放入到 resIndexlist 中
                resIndexlist.add(temp);
                temp -= 1;//temp左移
            }
            resIndexlist.add(mid);

            // 向 mid 索引值的左边扫描。将所有满足 1000 的元素的下标,加入到集合 ArrayList中
            temp = mid + 1;
            while(true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {
                    break;
                }
                // 否则,就 temp 放入到 resIndexlist 中
                resIndexlist.add(temp);
                temp += 1;//temp左移
            }
            return resIndexlist;
        }
    }
}

4. 插值查找算法

4.1 插值查找原理介绍
  1. 插值查找算法类似于 二分查找,不同的是插值查找每次从自适应mid 处开始查找。
  2. 将折半查找中的求 mid 索引的公式,low 表示左边索引,high 表示右边索引。
    在这里插入图片描述
  3. int midIndex = low + (high - low) * (key - arr[low])/(arr[high] - arr[low]) //插值索引
  4. 举例说明插值查找算法 1-100 的数组
插值查找代码实现
public class InsertValueSearch {
    
    public static void main(String[] args) {
            int [] arr = new int[100];
        for(int i = 0; i < 100; i++) {
            arr[i] = i + 1;
        }
        System.out.println(Arrays.toString(arr));
    }
    
    /**
     * 
     * @param arr 传入待查找数组
     * @param left 左边索引
     * @param right 右边索引
     * @param findVal 查找值
     * @return 如果找到,就返回对应的下标,如果没有找到,返回 -1
     */
    public static int InsertValueSearch(int[] arr, int left,int right, int findVal) {

        if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
            return -1;
        }

        // 求出mid
        int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
        int midVal = arr[mid];

        if (findVal > midVal) {
            // 说明应该向右递归
            return InsertValueSearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {
            // 说明向左递归
            return InsertValueSearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }
    }
    
}
4.3 插值查找注意事项
  1. 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找,速度较快
  2. 关键字分布不均匀的情况下,该方法不一定比折半查找要好。

5. 斐波那契(黄金分割法)查找算法

5.1 斐波那契(黄金分割法)查找基本介绍
  1. 黄金分割点是指把一条线段分割成两部分,使其中的一部分于全长与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618.由于按此比例设计的造型十分美丽,因此称为黄金分割。也称为中外比。这是一个神奇的数组,会带来意想不到的效果。
  2. 斐波那契数列{1,1,2,3,5,8,13,21,34,55} 发现斐波那契的两个相邻数的比例,无限接近黄金分割值 0.618.
5.2 斐波那契(黄金分割法)原理

斐波那契(黄金分割法)原理与前两种类似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low + F(k - 1)- 1(F表示斐波那契数列),如下图所示;
在这里插入图片描述

对F(k - 1)- 1的理解:
  1. 由斐波那契数列 F[k]= F[k - 1] + F[k - 2]的性质,可以得到 (F[k]-1)= (F[k - 1] - 1) + (F[k - 2] - 1) + 1。该式说明:只要顺序表的长度为 F[k] - 1,则可以将该表分成长度为 F[k-1] - 1和F[k - 2] - 1 的两段,即如上图所示。从而中间位置为 mid = low + F[k - 1] - 1
  2. 类似的,每一子段也可以用相同的方式分割。
  3. 但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k] - 1。这里的k值只要能使得F[k] - 1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从 n + 1 到 F[k] - 1位置),都赋为n位置的值即可。
斐波那契查找代码实现
public class FibonaciSort {

    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = { 1, 8, 10, 89, 1000, 1234 };
    }

    // 因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列。
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    // 编写斐波那契查找算法
    // 使用非递归的方式编写算法
    /**
     * 
     * @param arr 数组
     * @param key 我们需要查找的关键值
     * @return 返回对应的下标,如果没有返回 -1
     */
    public static int fibSearch(int[] arr, int key) {
        int low = 0;
        int high = arr.length - 1;
        int k = 0;// 表示斐波那契数值的下标
        int mid = 0;// 存放mid值
        int f[] = fib();// 获取到斐波那契数列

        // 获取到斐波那契分割数值的下标
        while (high > f[k] - 1) {
            k++;
        }
        // 因为 f[k] 值可能大于 a 的长度,因此我们需要使用 Arrays类,构建一个新的数组,并指向arr[]
        int[] temp = Arrays.copyOf(arr, f[k]);
        // 使用arr数组末尾的数字来填充多余的部分
        // 举例:
        // temp = {1,8,10,89,1000,1234,0,0,0} => {1,8,10,89,1000,1234,1234,1234,1234}
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = arr[high];
        }

        // 使用while 来循环处理,找到key
        while (low <= high) {
            // 只要这个条件满足,就可以找
            mid = low + f[k - 1] - 1;
            if (key < temp[mid]) {
                // 我们应该继续向数组的前面查找(左边)
                high = mid - 1;
                // 为什么是 k--;
                // 说明:
                // 1.全部元素 = 前面的元素 + 后面的元素
                // 2.f[k] = f[k - 1] + f[k - 2]
                // 因为前面有 f[k - 1]个元素,所以可以继续拆分 f[k - 1] = f[k - 2] + f[k - 3];
                // 即 在 f[K-1] 的前面继续查找 k--
                // 即下次循环 mid = f[k - 1 - 1] - 1
                k--;
            } else if (key > temp[mid]) {
                // 我们应该继续向数组的后面查找(右边)
                low = mid + 1;
                // 为什么是 k -= 2
                // 说明
                // 1.全部元素 = 前面元素 + 后边元素
                // 2.f[k] = f[k-1] + f[k-2]
                // 3.因为后面我们有f[k-2],所以可以继续拆分 f[k-1]=f[k-3] + f[k-4]
                k -= 2;
            } else  {
                // 找到
                // 需要确定,返回的是哪个下标
                if(mid <= high) {
                    return mid;
                } else {
                    return high;
                }
            }
        }
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值