execl 计算p-value

这篇博客详细介绍了在Excel中如何进行p-value的计算,特别是针对t-test时选择单尾和双尾检测的差异。单尾检验用于有明确方向性的预期,而双尾检验适用于没有确定方向的情况。文中通过实例解释了何时选择单尾或双尾,并讨论了两种检验在假设检验中的应用和选择标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

公式-插入函数-选择统计-选择t-test-然后选择你要计算的两组数据

Tails:1:单尾检测
2:双尾检测
*********我百度的单尾和双尾的区别,转自https://www.ilovematlab.cn/thread-162174-1-1.html
实际上是: 当所要比较的两个样本统计量的总体参数事先无法肯定哪个大或者哪个小时,就要用双尾检验,所得到的检验结果取P双尾值。否则就取P单尾值。单尾检验强调的是方向性。

举个例子:

例子1:在甲、乙两地随机抽取两个样本,他们的身高平均数分别为x1和x2,现在要对x1和x2进行检验,由于事先无法确定两个样本均数所在的总体样本均数哪个大哪个小,所以要用双尾检验。

例子2:一批17岁男生测验的身高平均数x1,到18岁时再进行测验得到平均数x2,若要对x1和x2进行检验,因为同一批人的18岁身高平均值不可能比17岁的还低,所以这里要用单尾检验。

实际上我们前面所说的T检验的例子都是无法确定两样本总体参数谁大谁小,所以都取P双尾值
上面是一个找到的资料,不知道对不对。


还有一个百度上面的:
单尾和双尾取决于你的H0。设两个样本是X1,X2,如果H0是X1=X2,那么做双尾检验,因为不确定X1比X2大还是小。如果如果H0是X1>X2或X1<X2,那么做的是单尾,因为有先验的假设。


还有一个相关的:
通常假设检验的目的是两总体参数是否相等,以两样本均数比较为例,

无效假设为两样本所代表的总体均数相等;

备择假设为不相等(有可能甲大于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值