平衡二叉树(AVL树)基本介绍
- 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树,可以保证查询效率较高。
- 具有以下特点:它是一颗空树或他的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一颗平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
AVL树左旋转思路分析
当前树不再是一颗AVL树,且根节点的右子树比较大,所以进行左旋转,使其变为AVL树
- 创建一个新的节点 newNode (以4这个值创建),创建一个新的节点,值等于当前根节点的值 ;
- 把新节点的左子树设置为当前节点的左子树。;
- 把新节点的右子树设置为当前节点的右子树的左子树;
- 把当前节点的值换为右子节点的值
- 把当前节点的右子树设置成右子树的右子树
- 把当前节点的左子树设置为新节点。
AVL树右旋转思路分析
当前树不再是一颗AVL树,且根节点的左子树比较大,所以进行右旋转,使其变为AVL树
- 创建一个新的节点 newNode (以10这个值创建),创建一个新的节点,值等于当前根节点的值 ;
- 把新节点的右子树设置为当前节点的左子树。;
- 把新节点的右子树设置为当前节点的左子树的右子树;
- 把当前节点的值换为左子节点的值
- 把当前节点的左子树设置成左子树的左子树
- 把当前节点的右子树设置为新节点。
AVL树双旋转思路分析
以上的数列可以通过进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转不能完成二叉树的转换。比如数列
int[] arr = {10,11,7,6,8,9}; 运行原来的代码可以看到,并没有转成AVL树。
int[] arr = {2,1,6,5,7,3}; //运行原来的代码可以看到,并没有转成AVL树。
so
- 当符合右旋转的条件时,如果他的左子树的右子树高度大于他的左子树的高度。
- 先对当前这个节点的左节点进行左旋转。
- 再对当前节点进行右旋转即可。