数据结构与算法学习笔记十一--平衡二叉树

平衡二叉树(AVL树)基本介绍

  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树,可以保证查询效率较高。
  2. 具有以下特点:它是一颗空树或他的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一颗平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。

AVL树左旋转思路分析

在这里插入图片描述

当前树不再是一颗AVL树,且根节点的右子树比较大,所以进行左旋转,使其变为AVL树

  1. 创建一个新的节点 newNode (以4这个值创建),创建一个新的节点,值等于当前根节点的值 ;
  2. 把新节点的左子树设置为当前节点的左子树。;
  3. 把新节点的右子树设置为当前节点的右子树的左子树;
  4. 把当前节点的值换为右子节点的值
  5. 把当前节点的右子树设置成右子树的右子树
  6. 把当前节点的左子树设置为新节点。

在这里插入图片描述
在这里插入图片描述

AVL树右旋转思路分析在这里插入图片描述

当前树不再是一颗AVL树,且根节点的左子树比较大,所以进行右旋转,使其变为AVL树

  1. 创建一个新的节点 newNode (以10这个值创建),创建一个新的节点,值等于当前根节点的值 ;
  2. 把新节点的右子树设置为当前节点的左子树。;
  3. 把新节点的右子树设置为当前节点的左子树的右子树;
  4. 把当前节点的值换为左子节点的值
  5. 把当前节点的左子树设置成左子树的左子树
  6. 把当前节点的右子树设置为新节点。

在这里插入图片描述

AVL树双旋转思路分析

以上的数列可以通过进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转不能完成二叉树的转换。比如数列
int[] arr = {10,11,7,6,8,9}; 运行原来的代码可以看到,并没有转成AVL树。
int[] arr = {2,1,6,5,7,3}; //运行原来的代码可以看到,并没有转成AVL树。

so

  1. 当符合右旋转的条件时,如果他的左子树的右子树高度大于他的左子树的高度。
  2. 先对当前这个节点的左节点进行左旋转。
  3. 再对当前节点进行右旋转即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值