几道数学题


1. lim ⁡ x → 0 ( 2 + e 1 x 1 + e 4 x + s i n x ∣ x ∣ ) = 1 \lim_{x\rightarrow0}(\frac{2+e^\frac{1}{x}}{1+e^\frac{4}{x}} + \frac{sinx}{|x|})=1 limx0(1+ex42+ex1+xsinx)=1

解:
lim ⁡ x → 0 + ( 2 + e 1 x 1 + e 4 x + s i n x ∣ x ∣ ) = lim ⁡ x → 0 + 2 + e 1 x 1 + e 4 x + lim ⁡ x → 0 + s i n x ∣ x ∣ = lim ⁡ x → 0 + 2 e − 4 x + e − 3 x e − 4 x + 1 + lim ⁡ x → 0 + s i n x x = lim ⁡ x → 0 + 2 e − 4 x + e − 3 x e − 4 x + 1 + lim ⁡ x → 0 + s i n x x = 0 + 1 = 1 \lim_{x\rightarrow0^+}(\frac{2+e^\frac{1}{x}}{1+e^\frac{4}{x}}+\frac{sinx}{|x|})=\lim_{x\rightarrow0^+}\frac{2+e^\frac{1}{x}}{1+e^\frac{4}{x}}+\lim_{x\rightarrow0^+}\frac{sinx}{|x|} \\ \quad \\ \\ =\lim_{x\rightarrow0^+}\frac{2e\frac{-4}{x}+e^\frac{-3}{x}}{e^\frac{-4}{x}+1}+\lim_{x\rightarrow0^+}\frac{sinx}{x} \\ \quad \\ \\ =\lim_{x\rightarrow0^+}\frac{2e\frac{-4}{x}+e^\frac{-3}{x}}{e^\frac{-4}{x}+1}+\lim_{x\rightarrow0^+}\frac{sinx}{x}=0+1 =1 x0+lim(1+ex42+ex1+xsinx)=x0+lim1+ex42+ex1+x0+limxsinx=x0+limex4+12ex4+ex3+x0+limxsinx=x0+limex4+12ex4+ex3+x0+limxsinx=0+1=1

lim ⁡ x → 0 − ( 2 + e 1 x 1 + e 4 x + s i n x ∣ x ∣ ) = lim ⁡ x → 0 − 2 + e 1 x 1 + e 4 x − lim ⁡ x → 0 − s i n x x = 2 − 1 = 1 \lim_{x\rightarrow0^-}(\frac{2+e^\frac{1}{x}}{1+e^\frac{4}{x}}+\frac{sinx}{|x|}) \\ \quad \\ \\ =\lim_{x\rightarrow0^-}\frac{2+e^\frac{1}{x}}{1+e^\frac{4}{x}}-\lim_{x\rightarrow0^-}\frac{sinx}{x} =2-1=1 x0lim(1+ex42+ex1+xsinx)=x0lim1+ex42+ex1x0limxsinx=21=1


2. 设 0 < a < b < c 0<a<b<c 0<a<b<c,求极限 l i m n → ∞ a n + b n + c n n lim_{n\rightarrow\infty}\sqrt[n]{a^n+b^n+c^n} limnnan+bn+cn

解:
0 < a < b < c , 所 以 3 c n > a n + b n + c n > c n lim ⁡ n → ∞ c n n = c , lim ⁡ n → ∞ 3 c n n = c 0<a<b<c,所以 3c^n>a^n+b^n+c^n>c^n \\ \quad \\ \lim_{n\rightarrow\infty}\sqrt[n]{c^n} = c, \quad \lim_{n\rightarrow\infty}\sqrt[n]{3c^n} = c 0<a<b<c3cn>an+bn+cn>cnnlimncn =c,nlimn3cn =c

夹逼定理 可知 l i m n → ∞ a n + b n + c n n = c lim_{n\rightarrow\infty}\sqrt[n]{a^n+b^n+c^n} = c limnnan+bn+cn =c


3. 在什么条件下,矩阵 ( a b c d ) \begin{pmatrix} a &b\\ c & d \end{pmatrix} (acbd)存在逆矩阵?并求出逆矩阵。

解:设矩阵 A = ( a b c d ) , 则 ∣ A ∣ = ∣ a b c d ∣ = a d − b c . A=\begin{pmatrix} a &b\\ c & d \end{pmatrix}, 则|A| = \begin{vmatrix} a &b\\ c & d \end{vmatrix}=ad-bc. A=(acbd),A=acbd=adbc.
A D − B C ≠ 0 , 则 矩 阵 A 可 逆 . AD-BC\neq0, 则矩阵A可逆. ADBC=0,A.

有 A ∗ = ( A 11 A 21 A 12 A 22 ) = ( d − b − c a ) . 有A^*=\begin{pmatrix} A_{11} & A_{21}\\ A_{12} & A_{22}\end{pmatrix} = \begin{pmatrix} d & -b\\ -c & a\end{pmatrix}. A=(A11A12A21A22)=(dcba).

因 此 , A − 1 = A ∗ ∣ A ∣ = 1 a d − b c ( d − b − c a ) . 因此, A^{-1} = \frac{A^*}{|A|} = \frac{1}{ad-bc} \begin{pmatrix} d & -b\\-c&a\end{pmatrix}. A1=AA=adbc1(dcba).

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值