Numpy学习笔记
1 Numpy介绍
numpy是高性能科学计算和数据分析的基础包
- ndarray:一个具有矢量算术和复杂广播能力的快速且节省空间的多维数组
- 对整数数据进行快速运算的标准数学函数
- 用于读写磁盘数据的工具以及用于操作内存映射文件的工具
2 Numpy使用方法
2.1 创建数组
| 方法 | 功能 | 举例 | 结果 | 注释 |
|---|---|---|---|---|
| arange() | 创建一维数组 | np.arange(10) | array([0, 1, 2, 3, 4]) | |
| array() | 创建一维或多维数组 | np.array([0,1,2,3,4],dtype=‘float’) | array([0., 1., 2., 3., 4.]) | 一维,dtype可指定数据类型 |
| np.array([[1,2],[3,4]]) | array([[1, 2], [3, 4]]) | 创建二维数组 |
2.2 数组属性

| 方法 | 功能 | 举例 | 结果 | 注释 |
|---|---|---|---|---|
| a.shape | 获取数组每一维度的大小 | a.shape | (4,6) | |
| a.ndim | 获取数组维度 | a.ndim | 2 | |
| a.size | 元素个数 | a.size | 24 | |
| a.itemsize | 每个元素在内存中的字节数 | a.itemsize | 4 | 数组元素为整型,占4个字节 |
| a.nbytes | 数组字节数 | a.nbytes | 96 | 相当于a.size*a.itemsize |
| a.astype(int) | 数组类型转换 |
2.3 数组变型
| 方法 | 功能 | 举例 | 注释 |
|---|---|---|---|
| a.reshape(m,n) | 返回一个m*n型数组 | a.reshape(5,2) | reshape()方法不改变原数组 |
| a.reshape(-1,n) | 确定n的长度,根据a的长度确定m | a.reshape(-1,2) | |
| a.reshape(m,-1) | 确定m的长度,根据a的长度确定m | a.reshape(5,-1) | |
| a.reshape(1,-1) | 返回一个行向量 | a.reshape(1,-1) | |
| a.reshape(-1,1) | 返回一个列向量 | a.reshape(-1,1) | |
| a.resize | 把原来数组变成m*n型元素个数 | a.resize(2,5) | resize()方法改变原数组 |


2.4 数组元素处理
| 方法 |
|---|

本文深入探讨了Numpy库,包括数组创建、属性、变型、元素处理、数组组合、轴操作、排序、广播机制、通用函数、条件查找、矩阵方法、线性代数、随机数生成及字符串操作等核心知识点,是Python科学计算的必备指南。
最低0.47元/天 解锁文章
645

被折叠的 条评论
为什么被折叠?



