- 博客(16)
- 资源 (1)
- 收藏
- 关注
原创 讲解基于图神经网络的情绪识别深度学习模型DGCNN(附基础原理讲解和代码讲解)
频谱图理论 (Spectral Graph Theory)是用线性代数概念(如特征向量和特征值理论)研究图的性质。(想要简单了解频谱图理论可以参考这个视频。DGCNN的基础是Chebynet。Chebynet是一种频谱图神经网络(Spectral GNNs)在频谱域中操作,具体指的是在图的拉普拉斯矩阵上应用卷积算子。
2024-07-17 20:05:45 1530 2
原创 CustomTkinter:便捷美化Tkinter的UI界面(附模板)
它提供了各种UI界面常见的小部件。这些小部件可以像正常的Tkinter小部件一样创建和使用,也可以与正常的Tkinter元素一起使用。是一个基于Tkinter的Python用户界面库。
2024-05-19 14:42:23 1914
原创 对比学习InfoNCE损失函数详解(附代码):以推荐系统用户和商品编码为例
相似度矩阵在每一行做softmax可以理解成分类问题里的概率:给定一个未扰动编码用户i,有其余32个扰动后的用户编码,判断扰动矩阵中某元素为用户i的概率。相似度矩阵的对角线是正确答案,这个对角线上的值越大,就说明模型特征的辨识度越好。是常用的对比学习损失,现有两个矩阵X(未扰动的用户矩阵)和X‘(扰动后的矩阵),两个矩阵每行一一对应相同的用户。点乘反映着两个向量的“相似度”,两个向量越“相似”,它们的点乘越大。会加入随机扰动的步骤,即在经过每一层的时候生成随机的噪音。是用户i的扰动的编码。
2024-04-25 13:54:59 2190
原创 深度学习RNN,GRU,LSTM文本生成解码器的训练损失讲解(附代码)
中的word_embedding是Token向量,它是一个矩阵,行数和词典的元素数量相同,每一行是32维度的词向量(维度是用户设定的,Word2Vec一般用200维度)。, 每一步计算下一位文字的概率,取概率最大的(这个是贪心算法生成文本,也可以加入一些随机程度采样增加文本多样性)对应的是生成文本的特征,它经过线性层输出20004维度的向量,第i个维度对应词典里第i个字的生成概率。在训练时,解码器会有两个输入:一是编码器提取的用户、商品特征,二是用户对商品的评价。个文字的生成只基于前面的文字。
2024-04-11 17:28:30 732
原创 PyTorch深度学习必用库之PyTorch Lightning新手教程(附100行的完整深度学习项目代码模板)
训练自动化:PyTorch Lightning可以帮助开发者处理训练循环,包括数据加载、批次迭代、前向传播、损失计算和反向传播等。100行左右的代码就可以写出完整的深度学习项目。分布式训练支持:PyTorch Lightning支持分布式训练,可以在多个GPU或多台机器上进行训练,从而加快训练速度,而且配置特别简单。可复现性:PyTorch Lightning提供的API方便用户使用固定的随机种子和训练环境,确保每次运行的结果是可复现的。
2024-03-15 15:50:08 8937
原创 多目标跟踪评价指标介绍:MOTA和IDF1,附py-motmetrics代码
多目标跟踪(MOT)技术在视频分析和计算机视觉领域扮演着至关重要的角色,它的主要任务是在视频序列中跟踪多个对象。MOT通常涉及两个主要阶段:目标检测和数据关联。首先,目标检测阶段通过图像处理技术识别视频中的多个对象,比如识别出路上的行人。然后,在数据关联阶段,算法需要将连续帧中检测到的对象正确关联起来,形成对象的运动轨迹。如下图所示:常用的常用的跟踪方法包括基于卡尔曼滤波的追踪、深度学习方法等。深度学习方法在处理大量复杂数据时显示出强大的性能,比如用ResNet对行人图片进行特征提取。
2024-02-10 22:59:53 2860
原创 简单讲解图卷积网络(Graph Convolutional Layer)附代码
图卷积操作(Graph Convolution Operation)是一种针对图结构数据的特殊卷积操作。在卷积神经网络(CNN)中,卷积操作常在网格数据(如图片)上进行。相比之下,图卷积操作是为了处理不规则的图结构数据而设计的。在图卷积操作中,节点的特征表示是根据邻居节点的特征和自身的特征来更新的。这个过程可以视为在图上的信息传播和聚合操作。具体来说,一个节点的新特征是其邻居节点特征的加权平均,权重通常由节点之间的连接和它们的度(即连接数)决定。给定一个节点 ii,其嵌入hihi。
2024-01-27 22:11:59 2361
原创 【教程+代码讲解】用EEGLab去除眼部伪迹
独立成分分析(ICA)是一种用于将多元信号分离成可加性子分量的计算方法(即,统计独立的非高斯信号源的线性组合)。
2023-09-04 05:52:15 3065
原创 PyTorch, Numpy常用函数、功能小结(含hook笔记)
PyTorch常用函数、功能小结张量变形a.t() // 矩阵转置torch.concat((a, b), 1) // 在列上拼接a, b张量运算torch.matmul(a, b) // 矩阵乘法torch.dot(a, b) // 矩阵点乘
2021-06-24 22:15:12 982
原创 用WebSocket制作简单的联网游戏(以Java为例)
这学期有一门课需要做一款可以联网的游戏,游戏使用Godot引擎。由于WebSocket简单易懂并且支持双向通信,所以我选择了它作为游戏客户端之间的交流协议。需求分析:每个客户端可以创建游戏房间,系统会随机生成房间号。另一个客户端在游戏界面输入房间号后即可加入房间。由于游戏是回合制问答比赛(类似Kahoot),所以每回合要求所有用户同时开始。使用库:javax.websocketWebSocket Server部分部署在远程服务器上,用于处理各本地客户端发来的请求并且在客户端之间传递信息。Java库
2021-05-17 15:38:19 1685 1
原创 GAT: 图注意力模型介绍及PyTorch代码分析
GAT: 图注意力模型介绍及代码分析原理图注意力层(Graph Attentional Layer)图中每一个节点都由ddd维实数特征向量表示,nnn个节点的特征向量可以写成Mn×dM_{n\times d}Mn×d的矩阵形式。经过图注意力层以后,代码分析...
2020-10-15 23:16:22 9132 1
原创 随机向量函数链神经网络(RVFLNN)简介——附测试代码
宽度学习(Broad Learning System)原理介绍:随机向量函数链神经网络(RVFLNN)目录宽度学习(Broad Learning System)原理介绍:随机向量函数链神经网络(RVFLNN)结构分析和训练优化函数链神经网络(Functional-link neural network,简称FLNN)的结构如下图。和深度神经网络结构不同的是,FLNN相当于把隐层放到了输入层中,作为增强结点(Enhancement nodes)。也可以理解成FLNN在输入层就对输入向量进行了非线性变换
2020-07-31 17:53:45 11269
原创 Python Imaging Library (PIL) v.1.1.7 全平台安装指南
PIL使你的Python解释器具有强大的图像处理功能,同时本库支持多种文件格式。极简安装:$ tar xvfz Imaging-1.1.7.tar.gz$ cd Imaging-1.1.7$ Python setup.py install指令的解释见下文安装要求如果需要实现以下功能,请确保在安装PIL库以前搭建好相关的库功能需要的库jpeg支持...
2019-01-14 11:09:34 1787
原创 Mac下Python导入第三方库
Mac下的Python自带easy_install,打开terminal输入: $ sudo easy_install pip #安装pip,一个用来管理第三方Module的玩意儿下载过程的长短和所在地区有关。如果因为网络问题下载不了,解决方法:前往pip的官方文档,下载 get-pip.py。然后在终端里输入指令$ python get-pip.py多版本python下...
2019-01-14 10:51:16 3984
Exam_Objectives.pdf
2019-07-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人