Task05开始啦:
Task05:观看 2021版视频 视频 P5-9:网络设计的技巧(2天)截止时间 07月22日03:00
开源文档:https://datawhalechina.github.io/leeml-notes
视频地址:https://www.bilibili.com/video/BV11K4y1S7AD?p=5
(一)局部最小值与鞍点
gradient为零的点统称为critical point
局部最小值:local minima
鞍点:saddle point
loss没办法在下降也许是因为卡在了critical point
为什么要分辨?
如果是local minima 那可能就没有路可以走了,如果是saddle point 还是有路可以走的,使loss更低。
如何分辨到底是卡在local minima 还是 saddle point?
L (θ) loss function 在 θ‘ 附近的泰勒展开式,
其中 gradient是一个向量,弥补 θ‘ 和θ‘ 之间的差距;
hessian是一个矩阵,会补足加上gradient后与真正的L (θ) 之间的差距。
判断标准:
为了方便,将(θ - θ’)设为 v
只需要看H的 eigenvalue(特征值)的正负即可。
H的特征值全为正的时候 ,我们认为是 local minima
H的特征值全为负的时候 ,我们认为是 local maxima
H的特征值有正有负时候 ,我们认为是 saddle point
找出负的特征值(saddle point 特征值有正有负)顺着 u 的方向更新,就可以让loss变小。
此处推荐笔记
李宏毅2021春机器学习笔记 --7.类神经网络训练不起来怎么办(一)局部最小值与鞍点
(二)批次与批量
批次:batch
动量:momentum
两个有可能可以对抗 saddle point 或local minima 的技术。
Batch
拿一个batch的资料拿出来算loss,所有的batch 看过一遍叫一个epoch
shuffle(洗牌) 有很多不同的做法,常见的做法是在每一次epoch开始之前会分一次batch,每一个epoch的batch都不一样。
此处推荐笔记
李宏毅2021春机器学习笔记 --8.类神经网络训练不起来怎么办(二)批次与动量
(三)自动调整学习率
此处推荐笔记
李宏毅2021春机器学习笔记 --9.类神经网络训练不起来怎么办(三)自动调整学习率
(四)分类
(五)批次标准化
此处推荐笔记
李宏毅2021春机器学习笔记 --11.类神经网络训练不起来怎么办(五)批次标准化(Batch Normalization)