.yml文件的基本用法

本文详细介绍YAML格式的基本语法、Python中PyYAML库的使用方法,包括加载、解析YAML文件,以及如何将Python对象转换为YAML格式。同时,文章探讨了YAML在自动化测试框架配置文件的应用实例。
部署运行你感兴趣的模型镜像

1、基本语法
格式要求
k:(空格)v:表示一对键值对(空格必须有);空格的个数不重要,只要相同层级的元素左对齐即可

空格的缩进来控制层级关系;只要是左对齐的一列数据,都是同一个层级的

server:
    port: 8081
    path: /hello

属性和值也是大小写敏感;

2、值的写法

字面量:普通的值(数字,字符串,布尔)

​ k: v:字面直接来写;

​ 字符串默认不用加上单引号或者双引号;

​ “”:双引号;不会转义字符串里面的特殊字符;特殊字符会作为本身想表示的意思

​ name: “zhangsan \n lisi”:输出;zhangsan 换行 lisi

​ ”:单引号;会转义特殊字符,特殊字符最终只是一个普通的字符串数据

​ name: ‘zhangsan \n lisi’:输出;zhangsan \n lisi

对象、Map(属性和值)(键值对):

​ k: v:在下一行来写对象的属性和值的关系;注意缩进

​ 对象还是k: v的方式

friends:
        lastName: zhangsan
        age: 20

行内写法:

friends: {lastName: zhangsan,age: 18}
数组(List、Set):

用- 值表示数组中的一个元素

pets:
 - cat
 - dog
 - pig

行内写法

pets: [cat,dog,pig]

1、@controller 控制器(注入服务)
2、@service 服务(注入dao)
3、@repository dao(实现dao访问)
4、@component (把普通pojo实例化到spring容器中,相当于配置文件中的)

@ConfigurationProperties:告诉SpringBoot将本类中的所有属性和配置文件中相关的配置进行绑定;
prefix = “person”:配置文件中哪个下面的所有属性进行一一映射

YAML是一种直观的能够被电脑识别的的数据序列化格式,容易被人类阅读,并且容易和脚本语言交互。YAML类似于XML,但是语法比XML简单得多,对于转化成数组或可以hash的数据时是很简单有效的。
一、PyYaml
1、load() :返回一个对象
我们先创建一个yml文件,config.yml:

name: Tom Smith
age: 37
spouse:
    name: Jane Smith
    age: 25
children:
 - name: Jimmy Smith
   age: 15
 - name1: Jenny Smith
   age1: 12
 

读取yml文件:

import yaml
f = open(r'E:\AutomaticTest\Test_Framework\config\config.yml')
y = yaml.load(f)
print (y)
 
]

结果:

{'name': 'Tom Smith', 'age': 37, 'spouse': {'name': 'Jane Smith', 'age': 25}, 'children': [{'name': 'Jimmy Smith', 'age': 15}, {'name1': 'Jenny Smith', 'age1': 12}]}
 

2、load_all()生成一个迭代器
如果string或文件包含几块yaml文档,你可以使用yaml.load_all来解析全部的文档。

import yaml
f = '''
---
name: James
age: 20
---
name: Lily
age: 19
'''
y = yaml.load_all(f)
for data in y:
    print(data)
 
]

执行结果:

{'name': 'James', 'age': 20}
{'name': 'Lily', 'age': 19}
 

3、yaml.dump 将一个python对象生成为yaml文档

import yaml
aproject = {'name': 'Silenthand Olleander',
            'race': 'Human',
            'traits': ['ONE_HAND', 'ONE_EYE']
            }

print(yaml.dump(aproject,))
 

执行结果:

name: Silenthand Olleander
race: Human
traits: [ONE_HAND, ONE_EYE]
 

yaml.dump接收的第二个参数一定要是一个打开的文本文件或二进制文件,yaml.dump会把生成的yaml文档写到文件里

import yaml

aproject = {'name': 'Silenthand Olleander',
            'race': 'Human',
            'traits': ['ONE_HAND', 'ONE_EYE']
            }
f = open(r'E:\AutomaticTest\Test_Framework\config\config.yml','w')
print(yaml.dump(aproject,f))
 

4、yaml.dump_all()将多个段输出到一个文件中

import yaml

obj1 = {"name": "James", "age": 20}
obj2 = ["Lily", 19]

with open(r'E:\AutomaticTest\Test_Framework\config\config.yml', 'w') as f:
    yaml.dump_all([obj1, obj2], f)
 

输出到文件:

{age: 20, name: James}
--- [Lily, 19]
 

二、yaml语法
1、基本规则


 1. 大小写敏感
 2. 使用缩进表示层级关系
 3. 缩进时不允许使用Tab,只允许使用空格
 4. 缩进的空格数目不重要,只要相同层级的元素左对齐即可
 5. # 表示注释,从它开始到行尾都被忽略
 

2、yaml转字典
yaml中支持映射或字典的表示,如下:

# 下面格式读到Python里会是个dict
name: 灰蓝
age: 0
job: Tester
 

输出:

{'name': '灰蓝', 'age': 0, 'job': 'Tester'}
 

3、yaml转列表
yaml中支持列表或数组的表示,如下:

# 下面格式读到Python里会是个list
- 灰蓝
- 0
- Tester
 

输出:

['灰蓝', 0, 'Tester']
 

4、复合结构:
字典和列表可以复合起来使用,如下:

# 下面格式读到Python里是个list里包含dict
- name: 灰蓝
  age: 0
  job: Tester
- name: James
  age: 30
 

输出:

[{'name': '灰蓝', 'age': 0, 'job': 'Tester'}, {'name': 'James', 'age': 30}]
 

5、基本类型:
yaml中有以下基本类型:

字符串
整型
浮点型
布尔型
null
时间
日期
 

我们写个例子来看下:

# 这个例子输出一个字典,其中value包括所有基本类型
str: "Hello World!"
int: 110
float: 3.141
boolean: true  # or false
None: null  # 也可以用 ~ 号来表示 null
time: 2016-09-22t11:43:30.20+08:00  # ISO8601,写法百度
date: 2016-09-22  # 同样ISO8601
 

输出:

{'str': 'Hello World!', 'int': 110, 'float': 3.141, 'boolean': True, 'None': None, 'time': datetime.datetime(2016, 9, 22, 3, 43, 30, 200000), 'date': datetime.date(2016, 9, 22)}
 

如果字符串没有空格或特殊字符,不需要加引号,但如果其中有空格或特殊字符,则需要加引号了

str: 灰蓝
str1: "Hello World"
str2: "Hello\nWorld"
 

输出:

{'str': '灰蓝', 'str1': 'Hello World', 'str2': 'Hello\nWorld'}
 

这里要注意单引号和双引号的区别,单引号中的特殊字符转到Python会被转义,也就是到最后是原样输出了,双引号不会被Python转义,到最后是输出了特殊字符;如:

str1: 'Hello\nWorld'
str2: "Hello\nWorld"
 

输出:

{'str1': 'Hello\\nWorld', 'str2': 'Hello\nWorld'}
 

可以看到,单引号中的’\n’最后是输出了,双引号中的’\n’最后是转义成了回车
6、引用
& 和 * 用于引用

name: &name 灰蓝
tester: *name
 

这个相当于一下脚本:

name: 灰蓝
tester: 灰蓝
 

输出:

{'name': '灰蓝', 'tester': '灰蓝'}
 

7、强制转换
yaml是可以进行强制转换的,用 !! 实现,如下:

str: !!str 3.14
int: !!int "123"
 

输出:

{'int': 123, 'str': '3.14'}
 

明显能够看出123被强转成了int类型,而float型的3.14则被强转成了str型。
8、分段
在同一个yaml文件中,可以用 — 来分段,这样可以将多个文档写在一个文件中

---
name: James
age: 20
---
name: Lily
age: 19
 

三、构造器(constructors)、表示器(representers)、解析器(resolvers )
1、yaml.YAMLObject
yaml.YAMLObject用元类来注册一个构造器(也就是代码里的 init() 方法),让你把yaml节点转为Python对象实例,用表示器(也就是代码里的 repr() 函数)来让你把Python对象转为yaml节点,看代码:

import yaml
class Person(yaml.YAMLObject):
    yaml_tag = '!person'

    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __repr__(self):
        return '%s(name=%s, age=%d)' % (self.__class__.__name__, self.name, self.age)

james = Person('James', 20)

print (yaml.dump(james))  # Python对象实例转为yaml

lily = yaml.load('!person {name: Lily, age: 19}')

print (lily)  # yaml转为Python对象实例
 

输出:

!person {age: 20, name: James}

Person(name=Lily, age=19)
 

2、yaml.add_constructor 和 yaml.add_representer
你可能在使用过程中并不想通过上面这种元类的方式,而是想定义正常的类,那么,可以用这两种方法

import yaml


class Person(object):
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __repr__(self):
        return 'Person(%s, %s)' % (self.name, self.age)

james = Person('James', 20)
print (yaml.dump(james))  # 没加表示器之前


def person_repr(dumper, data):
    return dumper.represent_mapping(u'!person', {"name": data.name, "age": data.age})  # mapping表示器,用于dict

yaml.add_representer(Person, person_repr)  # 用add_representer方法为对象添加表示器
print (yaml.dump(james))  # 加了表示器之后


def person_cons(loader, node):
    value = loader.construct_mapping(node)  # mapping构造器,用于dict
    name = value['name']
    age = value['age']
    return Person(name, age)

yaml.add_constructor(u'!person', person_cons)  # 用add_constructor方法为指定yaml标签添加构造器
lily = yaml.load('!person {name: Lily, age: 19}')
print (lily)
 

输出:

!!python/object:__main__.Person {age: 20, name: James}

!person {age: 20, name: James}

Person(Lily, 19)
 

第一行是没加表示器之前,多丑!中间那行是加了表示器之后,变成了规范的格式,下面添加了构造器,能够把 !person 标签转化为Person对象。
四、示例
yaml是一种很清晰、简洁的格式,而且跟Python非常合拍,非常容易操作,我们在搭建自动化测试框架的时候,可以采用yaml作为配置文件,或者用例文件,下面给出一个用例的示例

# Test using included Django test app
# First install python-django
# Then launch the app in another terminal by doing
#   cd testapp
#   python manage.py testserver test_data.json
# Once launched, tests can be executed via:
#   python resttest.py http://localhost:8000 miniapp-test.yaml
---
- config:
    - testset: "Tests using test app"

- test: # create entity
    - name: "Basic get"
    - url: "/api/person/"
- test: # create entity
    - name: "Get single person"
    - url: "/api/person/1/"
- test: # create entity
    - name: "Get single person"
    - url: "/api/person/1/"
    - method: 'DELETE'
- test: # create entity by PUT
    - name: "Create/update person"
    - url: "/api/person/1/"
    - method: "PUT"
    - body: '{"first_name": "Gaius","id": 1,"last_name": "Baltar","login": "gbaltar"}'
    - headers: {'Content-Type': 'application/json'}
- test: # create entity by POST
    - name: "Create person"
    - url: "/api/person/"
    - method: "POST"
    - body: '{"first_name": "Willim","last_name": "Adama","login": "theadmiral"}'
    - headers: {Content-Type: application/json}
 

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

<think>嗯,用户问的是如何正确配置和使用 environment.yml 文件。首先,我需要回忆一下关于 conda 环境管理的知识。记得 environment.yml 文件是用来定义 conda 环境的配置,包括依赖项和版本号。用户可能是在创建或共享环境时遇到问题,或者不太清楚具体的步骤。 首先,我应该解释如何创建一个 environment.yml 文件。需要列出基本结构,比如 name 指定环境名称,channels 列出源,dependencies 包含所有依赖包。可能用户会需要知道如何指定版本,比如用=、==或者范围。这时候需要给出例子,比如 numpy=1.21.5,这样用户能清楚格式。 接下来是使用 conda 命令创建环境。用户可能已经安装了 conda,但需要知道具体的命令,比如 conda env create -f environment.yml。这里要提醒用户确保在正确的目录下运行命令,否则可能找不到文件。另外,创建后激活环境的命令也是必要的,比如 conda activate myenv。 然后是导出现有环境为 yml 文件。用户可能需要备份当前环境或者分享给他人,所以导出命令 conda env export > environment.yml 很重要。不过要注意,这样导出的可能包含很多系统特定的包,有时候需要手动清理,或者使用 --no-builds 参数来排除构建信息。 常见问题部分需要考虑用户可能遇到的错误。比如环境创建失败,可能是依赖冲突,这时候需要检查版本兼容性。或者用户修改了 yml 文件后如何更新环境,这时候需要用 conda env update 命令。另外,跨平台的问题,比如在 Windows 和 Linux 之间,可能有些包不兼容,这时候可能需要删除平台相关的包,比如通过 pip 安装的。 还要记得引用相关的资料,比如站内引用里的 [1] 和 [4] 提到了 conda 创建环境和常见问题解决,特别是删除唯一标识符来简化配置。这些引用需要自然地融入到回答中,帮助用户定位更多信息。 最后,生成相关问题时要覆盖用户可能进一步想知道的内容,比如管理多个环境、解决依赖冲突、与 requirements.txt 的区别,以及环境创建失败的调试方法。这样用户可以根据自己的需求继续深入了解。</think>### 如何正确配置和使用 `environment.yml` 文件 `environment.yml` 是 Conda 用于定义和管理虚拟环境的配置文件,通过它可以精确控制依赖包的版本和环境配置。以下是详细步骤和注意事项: --- #### **1. 创建 `environment.yml` 文件** 文件基本结构如下: ```yaml name: myenv # 环境名称 channels: - defaults # 包下载渠道(如 conda-forge) dependencies: - python=3.8 # 指定 Python 版本 - numpy=1.21.5 # 指定包版本 - pandas - pip: # 通过 pip 安装的包 - requests==2.26.0 ``` - **关键字段**: - `name`: 环境名称。 - `channels`: 包来源渠道,优先级按列表顺序。 - `dependencies`: 依赖列表,支持 Conda 和 Pip 安装的包[^1]。 --- #### **2. 使用 Conda 创建环境** 在包含 `environment.yml` 的目录下执行: ```bash conda env create -f environment.yml ``` - **验证环境**:创建完成后,激活环境: ```bash conda activate myenv ``` - **常见问题**: - 若依赖冲突,需手动调整版本号。 - 若文件路径错误,使用绝对路径或检查文件位置[^4]。 --- #### **3. 导出已有环境为 YAML 文件** 从现有环境导出配置: ```bash conda env export > environment.yml ``` - **优化导出文件**: - 删除 `prefix` 行以避免系统路径绑定。 - 使用 `--no-builds` 忽略构建版本号: ```bash conda env export --no-builds > environment.yml ``` --- #### **4. 更新环境配置** 修改 `environment.yml` 后更新环境: ```bash conda env update --file environment.yml --name myenv ``` --- #### **5. 跨平台兼容性处理** 若需跨操作系统(如 Windows/Linux)共享环境: - 移除平台特定的依赖(如 `vs2015_runtime`)。 - 将 Pip 安装的包移至 `dependencies` 下的 `pip` 子列表。 --- #### **示例:最小化配置** ```yaml name: basic-env channels: - conda-forge dependencies: - python=3.9 - flask - pip: - gunicorn ``` --- ### 常见问题解答 1. **依赖冲突如何解决?** 检查版本兼容性,逐步移除或降级冲突包。 2. **如何复用现有环境?** 导出配置后,在新机器上通过 `conda env create` 重建。 3. **`environment.yml` 与 `requirements.txt` 的区别?** Conda 的 YAML 文件支持多渠道、多包管理器,而 `requirements.txt` 仅限 Pip[^1][^3]。 ---
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值