import numpy as np
from bao import *
from shujukuochong import *
matplotlib.rcParams['axes.unicode_minus']=False
plt.figure(figsize=(25,15))
colvalue=['#FF8C00','#FF1493', '#8B4513','#FF69B4', '#A9A9A9','#000000','#0000FF',
'#800080','#556B2F','#008000','#FF0000','#32CD32','#48D1CC']
marker = ['.','8','x','+','v','*','D','.','.','^','x','2','.']
label = ['故障1','故障2','故障3','故障4','故障5','故障6','故障7'
,'故障8','故障9','故障10','故障11','故障12','故障13']
for i in range(len(y1)):
X,y= datasets[i]
plt.scatter(X[:,0],X[:,1],color=colvalue[i], marker=marker[i]
比值系数法故障散点图的画法
最新推荐文章于 2023-09-03 22:27:12 发布
本文详细介绍了如何使用比值系数法来创建故障散点图,该方法在故障诊断和数据分析中有着广泛应用。通过计算不同参数间的比值系数,可以揭示设备状态的异常模式,并以散点图的形式直观展示出来,帮助工程师快速定位问题。
摘要由CSDN通过智能技术生成