学渣研究僧3
码龄6年
关注
提问 私信
  • 博客:78,479
    78,479
    总访问量
  • 39
    原创
  • 1,355,107
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:黑龙江省
  • 加入CSDN时间: 2019-01-15
博客简介:

weixin_44539090的博客

查看详细资料
个人成就
  • 获得63次点赞
  • 内容获得19次评论
  • 获得125次收藏
  • 代码片获得803次分享
创作历程
  • 20篇
    2021年
  • 20篇
    2020年
成就勋章
TA的专栏
  • python
    24篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    scikit-learn聚类集成学习迁移学习分类回归
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

357人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

根据某一标签,或行中的某一个值找到行所在的索引值

引用此文章
原创
发布博客 2021.05.11 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

更新包之后,spyder打不开的解决方法

1、首先尝试了运行Reset Spyder Setting没用,还是闪一下就没然后了2、尝试了删除C:\Users\用户名\ 路径下的.spyder-py3文件夹,依然没用、3、重装了更高版本的Spyder,依然没用4、在Anaconda Powershell Prompt (Anaconda)中输入命令 spyderspyder --new-instance得到错误原因Bad file descriptor (C:\ci\zeromq_1602704446950\work\src\epol
原创
发布博客 2021.04.28 ·
6239 阅读 ·
9 点赞 ·
7 评论 ·
21 收藏

F值、G-mean、AUC,三者平局值Average的曲线画法

import numpy as npimport matplotlib.pyplot as pltfrom matplotlib import rcimport matplotlib as mplimport matplotlib.font_manager as fmmyfont=fm.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')mpl.rcParams['axes.unicode_minus']=Falserc('mathtext', d
原创
发布博客 2021.04.22 ·
2932 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

CluBagging的平均轮廓系数

import numpy as npimport matplotlib.pyplot as pltfrom matplotlib import rcimport matplotlib as mplimport matplotlib.font_manager as fmmyfont=fm.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')mpl.rcParams['axes.unicode_minus']=Falseplt.rcParams['fo
原创
发布博客 2021.04.22 ·
245 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

聚类性能度量

兰德指数:需要给出真实标签信息轮廓系数calinski_harabaz分数
原创
发布博客 2021.03.29 ·
91 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

新版spyder中如何设置脚本文件共同使用同一个Variable explorer 中数据

经典,更新这玩意更得解决措施如下:将红框框里的东西选中就Ok啦。spyder脚本无法访问variable explorer内的变量Spyder 脚本不能直接访问variable explorer 中已有的变量
原创
发布博客 2021.03.27 ·
504 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

标签中文字过长如何将标签文字两行显示

如将plt.xticks(np.arange(len(S_D))+1,['决策树','神经网络','Bagging(决策树)','Bagging(神经网络)','SpeSBagging(决策树)','SpeSBagging(神经网络)','SpeSBagging(神经网络
决策树)'])改成plt.xticks(np.arange(len(S_D))+1,['决策树','神经网络','Bagging
(决策树)','Bagging
(神经网络)','SpeSBagging
(决策树)'
原创
发布博客 2021.03.26 ·
1210 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

轮廓系数

import numpy as npimport matplotlib.pyplot as pltfrom matplotlib import rcimport matplotlib as mplimport matplotlib.font_manager as fmmyfont=fm.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')mpl.rcParams['axes.unicode_minus']=Falserc('mathtext', d
原创
发布博客 2021.03.26 ·
181 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

不平衡数据集主模块

from bao import *import matplotlib.pyplot as pltimport numpy as npimport pandas as pdimport matplotlib.font_manager as fmfrom collections import Counterfrom imblearn.over_sampling import BorderlineSMOTEfrom imblearn.over_sampling import SMOTEfrom s
原创
发布博客 2021.03.25 ·
100 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

查找重复元素的所有索引值

题目:给定一个列表,请设计一个函数,实现传入一个target=3,输出3这个元素在列表a中的索引,输出格式如下:[0,7,13]a=[3,4,5,6,6,5,4,3,2,1,7,8,8,3]for index, nums in enumerate(a): if nums == target: b.append(index)print(b)...
原创
发布博客 2021.03.25 ·
607 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

make_classification

from collections import Counterfrom sklearn.datasets import make_classificationfrom imblearn.over_sampling import ADASYNX, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_inf
原创
发布博客 2021.03.24 ·
700 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

不平衡数据集的获取

from bao import *import matplotlib.pyplot as pltimport numpy as npimport pandas as pdimport matplotlib.font_manager as fmmyfont=fm.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')np.random.seed(668)#random_state = 2df = pd.read_csv('C:\\Users\\宝荣
原创
发布博客 2021.03.24 ·
257 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

在iris数据集上决策树算法和Bagging算法的简单对比

import pandas as pdfrom sklearn.model_selection import train_test_splitfrom bao import *from sklearn import datasets # 导入库iris = datasets.load_iris() # 导入鸢尾花数据X = iris.datay = iris.targetX=np.array(X)y=np.array(y)#print(type(x_train))x_train
原创
发布博客 2021.03.24 ·
553 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

解决散点图中图例中文文字大小无法改变的问题

绘制散点图时代码如下:import numpy as npfrom bao import *from shujukuochong import *import matplotlib.font_manager as fmmyfont=fm.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')mpl.rcParams['axes.unicode_minus'] = Falsempl.rcParams['axes.unicode_minus']=Fals
原创
发布博客 2021.03.23 ·
861 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

比值系数法故障散点图的画法

import numpy as npfrom bao import *from shujukuochong import *plt.figure(figsize=(15,9)) colvalue=['#FF8C00','#FF1493', '#8B4513','#FF69B4', '#A9A9A9','#000000','#0000FF', '#800080','#556B2F','#008000','#FF0000','#32CD32','#48D1CC'] marke
原创
发布博客 2021.03.22 ·
185 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

多分类集成学习分歧度量的计算

上代码def f1(XX): A=[] #A为两个基分类器预测相同的个数 B=[] #B为量个基分类器预测不相同的个数 C=[] #用来存放多分类分歧度量值 for i in range(len(XX)): j=len(XX)-i-1 #print(j) if j>0: #print("ccc") for t in range(j):
原创
发布博客 2021.03.16 ·
583 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

#把列表的数据依次填入矩阵对角线的一侧,另一侧与之对称

以5行5列元素为例#把列表的数据依次填入矩阵对角线的一侧,另一侧与之对称import numpy as npfrom bao import *s=5#矩阵的行列数CC=np.array([0.3333333333333333, 0.3333333333333333, 0.2857142857142857, 0.38095238095238093, 0.19047619047619047, 0.14285714285714285, 0.23809523809523808, 0.2380952380
原创
发布博客 2021.03.16 ·
249 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

office2019将UCI上下载的.data文件导入excel

如车辆信息数据数据集数据量特征数类别简单分布是否有缺失值来源vehicle846184212/218/199/217否UCL下载到文件夹中将data文件选择打开方式用记事本打开将所有数据粘贴到新建的chelaingxinxi.txt文件中新建一个excel文件选择从文本导入数据选择chelaingxinxi.txt文件启用编辑选择按字符数分隔数据txt文件中数据以什么分隔此处就以什么分隔完成后点击关闭并上载得到想要的数据表
原创
发布博客 2021.03.15 ·
2128 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

对iris部分数据集进行采样

from sklearn import datasets # 导入库import numpy as npfrom collections import Counteriris = datasets.load_iris() # 导入鸢尾花数据#print(iris.data.shape,iris.target.shape) # (150, 4) (150,) 数据类型#print("
")#print(iris.feature_names) # [花萼长,花萼宽,花瓣长,花瓣宽] 属性
原创
发布博客 2021.03.15 ·
225 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

fetch_lfw_people相关

from sklearn.datasets import fetch_lfw_people#导入数据集,第一次可能等待时间过长,因为要在网上下载数据集import matplotlib.pyplot as pltpeople = fetch_lfw_people(min_faces_per_person=2,resize = 0.7)print(people.target_names)print("图像个数以及像素:{}".format(people.images.shape))#(9164, 87
原创
发布博客 2021.01.19 ·
1627 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多