线程池与协程池的原理与实现【c++与gloang】【万字分析】


前言

C++ 线程池是一种多线程编程实现方式,它可以将多个任务并发执行,提高程序的运行效率。具体而言,线程池维护一个线程集合,在程序运行时创建一定数量的线程,并将任务插入到队列中,等待空闲线程来执行。
Go语言中的线程池通常指的是协程池,它是一种通过重复利用大量轻量级协程来节省系统开销和提高并发性能的技术。协程轻量、创建和销毁成本低。但是,如果简单地在程序中创建大量的协程,会导致系统开销较大,降低性能。因此,使用协程池管理和控制协程数量是一种有效的解决方案

下面本人使用c++代码实现线程池以及使用glang实现协程池,并且进行总结。

一、线程池基础知识

1、线程池概念

我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务呢?

线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池线程都是后台线程。每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中。如果某个线程在托管代码中空闲(如正在等待某个事件), 则线程池将插入另一个辅助线程来使所有处理器保持繁忙。如果所有线程池线程都始终保持繁忙,但队列中包含挂起的工作,则线程池将在一段时间后创建另一个辅助线程但线程的数目永远不会超过最大值。超过最大值的线程可以排队,但他们要等到其他线程完成后才启动。

2、线程池组成

线程池的组成主要分为 3 个部分,这三部分配合工作就可以得到一个完整的线程池:

任务队列:存储需要处理的任务,由工作的线程来处理这些任务
通过线程池提供的 API 函数,将一个待处理的任务添加到任务队列,或者从任务队列中删除
已处理的任务会被从任务队列中删除
线程池的使用者,也就是调用线程池函数往任务队列中添加任务的线程就是生产者线程
工作的线程(任务队列任务的消费者) ,N个
线程池中维护了一定数量的工作线程,他们的作用是是不停的读任务队列,从里边取出任务并处理
工作的线程相当于是任务队列的消费者角色,
如果任务队列为空,工作的线程将会被阻塞 (使用条件变量 / 信号量阻塞)
如果阻塞之后有了新的任务,由生产者将阻塞解除,工作线程开始工作
管理者线程(不处理任务队列中的任务),1个
它的任务是周期性的对任务队列中的任务数量以及处于忙状态的工作线程个数进行检测
当任务过多的时候,可以适当的创建一些新的工作线程
当任务过少的时候,可以适当的销毁一些工作的线程

在这里插入图片描述

二、任务队列的实现

1、定义任务结构体以及任务队列

其中 Task 是任务类,里边有两个成员,分别是两个指针 void()(void) 和 void*

另外一个类 TaskQueue 是任务队列,提供了添加任务、取出任务、存储任务、获取任务个数、线程同步的功能。
addTask 函数用来向任务队列中添加任务,可以接受一个已经构造好的任务对象或者直接传入一个回调函数和它的参数来创建任务对象并添加到队列中。takeTask 函数用来从任务队列中取出一个任务,并返回对应的任务对象。taskNumber 函数则用来获取当前任务队列中的任务数量,通过内联函数来提高函数调用效率。

在进行对任务队列的修改操作时,需要先获取 m_mutex 互斥锁,以保证线程安全性。一个线程获取到锁时,其他线程将会阻塞等待,直到获取到锁的线程释放了该锁


using callback = void (*)(void*);
struct Task {
   
   Task() {
   
      function = nullptr;
      arg = nullptr;
   }
   //    初始化 任务
   Task(callback f, void* arg) {
   
      function = f;
      this->arg = arg;
   }
   callback function;
   void* arg;
};
class TaskQueue {
   
  private:
   pthread_mutex_t m_mutex;   // 互斥锁
   std::queue<Task> m_queue;  // 任务队列

  public:
   TaskQueue();
   ~TaskQueue();

   // 添加任务
   void addTask(Task& task);
   void addTask(callback func, void* arg);

   // 取出一个任务
   Task takeTask();

   // 获取当前队列中任务个数 定义为内联函数 提高效率 代码块的替换
   inline int taskNumber() {
    return m_queue.size(); }
};

2、实现类函数

在默认构造函数中,调用 pthread_mutex_init 函数初始化了互斥锁 m_mutex。在析构函数中,调用 pthread_mutex_destroy 函数销毁互斥锁 m_mutex。这样可以保证资源的正确释放,避免内存泄露。

addTask 函数用来向任务队列中添加任务。首先需要获取互斥锁 m_mutex,确保线程安全。然后将任务对象或回调函数和参数封装成任务对象,并将任务对象压入任务队列中。最后释放互斥锁。

takeTask 函数用于从任务队列中取出一个任务。首先获取互斥锁 m_mutex,确保线程安全。如果队列不为空,则取出队首元素作为返回值,并将其从队列中删除;否则返回一个空的任务对象。最终释放互斥锁。


TaskQueue::TaskQueue() {
   
   pthread_mutex_init(&m_mutex, NULL);
}
TaskQueue::~TaskQueue() {
   
   pthread_mutex_destroy(&m_mutex);
}
void TaskQueue::addTask(Task& task) {
   
   pthread_mutex_lock(&m_mutex);
   m_queue.push(task);
   pthread_mutex_unlock(&m_mutex);
}
void TaskQueue::addTask(callback func, void* arg) {
   
   pthread_mutex_lock(&m_mutex);
   Task task;
   task.function = func;
   task.arg = arg;
   m_queue.push(task);
   pthread_mutex_unlock(&m_mutex);
}
Task TaskQueue::takeTask() {
   
   Task t;
   pthread_mutex_lock(&m_mutex);
   if (m_queue.size() > 0) {
   
      t = m_queue.front();
      m_queue.pop();
   }
   pthread_mutex_unlock(&m_mutex);
   return t;
}

三、线程池的实现

1、类的定义

m_taskQ: 任务队列指针,用于存放待执行的任务。
m_lock: 线程池锁,用于保护线程池的操作不被多个线程同时访问和修改。
m_notEmpty: 条件变量,用于当任务队列为空时等待新任务的到来。
m_threadIDs: 线程 ID 数组,保存所有工作线程的 ID。
m_managerID: 管理者线程 ID,用于管理线程池中的工作线程。
m_minNum: 最小线程数,线程池初始大小,至少拥有 m_minNum 个线程。
m_maxNum: 最大线程数,线程池允许的最大线程数,不能超过此数目。
m_busyNum: 正在执行任务的工作线程数。
m_aliveNum: 存活状态的线程数(即没有被销毁的线程数)。
m_exitNum: 要销毁的线程数。
m_shutdown: 线程池是否关闭,如果为 true,线程池将不再接收新任务。
主要成员函数有:

ThreadPool(int min, int max): 构造函数,创建一个线程池对象。
void addTask(Task task): 向任务队列中添加一个新的任务。
int getBusyNumber(): 返回正在执行任务的工作线程数目。
int getAliveNumber(): 返回池中存活线程数量。
~ThreadPool(): 析构函数,销毁线程池对象。


class ThreadPool {
   
  private:
   TaskQueue* m_taskQ;
   pthread_mutex_t m_lock;     // 锁整个的线程池
   pthread_cond_t m_notEmpty;  // 任务队列是不是空了
   pthread_t* m_threadIDs;  // 保存线程id的数组   会把线程id保存在这个数组中
   pthread_t m_managerID;  // 管理者线程ID
   int m_minNum;           // 最小线程数量
   int m_maxNum;           // 最大线程数量
   int m_busyNum;          // 忙的线程的个数
   int m_aliveNum;         // 存活的线程的个数
   int m_exitNum;          // 要销毁的线程个数
   bool m_shutdown = false;

  public:
   //   传入 工作线程最大以及最小值
   ThreadPool(int min, int max);
   // 添加任务
   void addTask(Task task);
   // 获取忙线程的个数
   int getBusyNumber();
   // 获取活着的线程个数
   int getAliveNumber();

   ~ThreadPool();

  private:
   // 工作的线程的任务函数
   static void* worker(void* arg);
   // 管理者线程的任务函数
   static void* manager(void* arg);
   void threadExit();
};

2、构造与析构函数

实例化一个任务队列 m_taskQ,并根据传入的参数 minNum 和 maxNum 初始化了线程池的各项属性。然后,根据最小线程数 minNum 创建相应数量的线程,并将他们分配到线程数组 m_threadIDs 中。最后,创建管理者线程 m_managerID。其中,线程的回调函数为 worker,管理者线程的回调函数为 manager

ThreadPool::ThreadPool(int minNum, int maxNum) {
   
   // 实例化任务队列
    // 实例化任务队列
    m_taskQ = new TaskQueue;
    do {
   
        // 初始化线程池
        m_minNum = minNum;
        m_maxNum = maxNum;
        m_busyNum = 0;
        m_aliveNum = minNum;

        // 根据线程的最大上限给线程数组分配内存
        m_threadIDs = new pthread_t[maxNum];
        if (m_threadIDs == nullptr)
        {
   
            cout << "malloc thread_t[] 失败...." << endl;;
            break;
        }
        // 初始化
        memset(m_threadIDs, 0, sizeof(pthread_t) * maxNum);
        // 初始化互斥锁,条件变量
        if (pthread_mutex_init(&m_lock, NULL) != 0 ||
            pthread_cond_init(&m_notEmpty, NULL) != 0)
        {
   
            cout << "init mutex or condition fail..." << endl;
            break;
        }

        /// 创建线程 //
        // 根据最小线程个数, 创建线程
        for (int i = 0; i < minNum; ++i)
        {
   
            pthread_create(&m_threadIDs[i], NULL, worker, this);
            cout << "创建子线程, ID: " << to_string(m_threadIDs[i]) << endl<
C++中,协程池是一种用于高效管理并发任务的技术,它通过预先创建一定数量的线程,并按照任务需求分发它们,避免了频繁地创建销毁线程带来的性能开销。以下是一个简单的C++17协程池的示例,使用`std::coroutine`库: ```cpp #include <iostream> #include <thread> #include <vector> #include <queue> // 定义协程函数模板 template <typename Func> class CoroutinePool { public: explicit CoroutinePool(size_t size) : worker_count_(size), tasks_(size) {} // 提交任务到队列 void Enqueue(Func&& func) { tasks_.emplace_back(std::move(func)); } private: void Worker() { while (true) { if (!tasks_.empty()) { std::packaged_task<void()> task = tasks_.front(); tasks_.pop(); task.call(); // 调用协程 } else { std::this_thread::yield(); // 空闲时让出处理器时间 } } } std::vector<std::packaged_task<void()>> tasks_; std::vector<std::thread> workers_; size_t worker_count_; // 工作线程数量 void StartWorkers() { for (size_t i = 0; i < worker_count_; ++i) { workers_.emplace_back(&CoroutinePool::Worker, this); } } ~CoroutinePool() { for (auto& worker : workers_) { worker.join(); // 等待所有工作线程结束 } } }; // 使用示例 int main() { CoroutinePool<int> pool(4); // 创建一个包含4个线程的协程池 // 提交一些工作 for (int i = 0; i < 10; ++i) { auto id = i; pool.Enqueue([id] { std::cout << "Task " << id << " running by coroutine pool" << std::endl; }); } pool.StartWorkers(); // 启动协程池 return 0; } ``` 在这个例子中,`Enqueue`方法将协程的任务添加到队列,每个worker线程会从队列取出并执行任务。当所有任务完成并且队列为空时,`~CoroutinePool`析构函数会等待所有工作线程结束。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值