- 博客(16)
- 收藏
- 关注

原创 首个LLM agent的优化研究综述(上)——A Survey on the Optimization of Large Language Model-based Agents
对于首篇LLM agent优化综述的总结与讲解——A Survey on the Optimization of Large Language Model-based Agents(上),由于内容过多将分为2个部分对现有使用各种策略来优化LLM AGENT的方法记性总结与回顾。具体分为参数驱动和参数无关的优化方法。重点先介绍了 参数驱动优化,包含基于微调的优化、基于强化学习的优化和混合策略优化。重点包含轨迹数据构建、微调技术、奖励函数设计等。此外也讨论了使用提示工程和外部知识检索的无参数优化方法。
2025-03-18 14:40:44
882
原创 首个LLM Agent的优化研究综述(下)——A Survey on the Optimization of LLM Agents
首个LLM agent优化综述的论文全面介绍
2025-03-24 14:41:10
711
原创 Large Language Models for Education: A Survey and Outlook 大模型+教育的综述
来自松鼠AI的大模型+教育综述:Large Language Models for Education: A Survey and Outlook。现有的LLM in教育综述,缺乏从技术角度的总结,因此本文以技术为中心(用下游应用区分)进行分类,对现有数据集和基准总结。
2024-07-20 12:18:44
1677
原创 AAAI_LLM与KT的结合方法SGNN-LLM增强对题目的学生表现预测
来自2024AAAI的大模型与知识追踪结合文章,利用符号二部图和大语言模型,结合对比学习与LLM语义嵌入来生成更好的题目与学生嵌入,并将KT建模为二部图的边预测任务。
2024-07-15 19:33:44
1065
2
原创 Meta-Prompt任务无关的提示方法 用LM扮演指导者和各个专家模型角色
一篇由OPENAI和斯坦福大学合作的论文。本文引入Meta-prompting 元提示,一个有效的脚手架技术来增强语言模型功能,该方法让单LM 转化为多方面的指挥者,擅长管理和聚合多个独立的LM查询。提示引导LM将复杂的任务分解成更小的、更易于管理的子任务。这些子任务然后由同一LM的不同“专家”实例处理,每个实例都在特定的、定制的指令下操作。它还利用其固有的批判性思维和健壮的验证过程来细化和验证最终结果,同时扮演综合协调者和专家小组的角色。元提示具有**零样本、任务无关性**的特点。此外研究了外部工具
2024-01-25 20:15:43
1526
1
原创 Chain of experts: 多个LLM Agent协作解决复杂运筹学问题
当前运筹学问题中的自动建模与编程,大量的依赖领域专家,如何使用大模型减轻依赖实现自动化过程? 本文提出了一个多智能体协作框架CoE,使用多个LLM Agent赋予对应的角色和领域知识,例如编程、建模,通过前向的思维构建和反向的反思机制协作完成复杂的运筹学OR问题
2023-12-17 12:24:09
1800
4
原创 ToM for Multi-Agent Collaboration via LLMs 多智能体协作能力
本文评估基于LLM agents在多智能体合作的文本游戏心智理论推理任务
2023-12-16 13:52:40
1718
原创 SYNAPSE: TRAJECTORY-AS-EXEMPLAR PROMPTING WITH MEMORY FOR COMPUTER CONTROL
使用LLM Agent 解决计算机控制的问题,即航班预定、邮件管理等
2023-12-15 14:34:12
1116
原创 UNLEASHING COGNITIVE SYNERGY IN LLMS: A TASK-SOLVING AGENT THROUGH MULTI-PERSONA SELF-COLLABORATION
对SPP(solo performance prompting)进行介绍,该方法给一个LLM分配多个角色,来释放认知协同能力,实现多角色的自我协助完成任务。
2023-12-14 10:27:17
1122
1
原创 大语言模型真的可以自我验证 自我纠正吗? 多团队再次提出质疑-三篇文献大总结
大语言模型真的能自我验证吗,谷歌的deepmind等多团队提出质疑,认为GPT4并不具有自我纠正、自我推理、自我批评的能力,它做的只是一种检索运算
2023-11-02 23:50:33
982
原创 《Agents: An Open-source Framework for Autonomous Language Agents》一个自主语言智能体的开源框架
介绍一篇最新LLM agent开源库文章。大型语言模型(LLM)的最新进展使研究人员和开发人员能够构建自主语言agents,可以自动解决各种任务,并并与环境,人类和其他代理进行交互 通过自然语言接口。本文发布了AGENTS,一个开源库,其目标是向更广泛的非专业观众开放这些进步。AGENTS经过精心设计,支持重要功能,包括规划,记忆,工具使用,多agents交流和细粒度符号控制。AGENTS是用户友好的,因为它使非专业人员能够构建,自定义,测试,调整和部署最先进的自主智能体,而无需编写太多代码。
2023-09-22 00:06:49
1050
1
原创 2023知识追踪最新综述来自顶刊!!!——《Knowledge Tracing:A Survey》
2023知识追踪最新综述——《Knowledge Tracing:A Survey》,文章发表在ACM Computing Survey上
2023-03-08 16:18:04
7754
2
原创 2022知识追踪最新综述——A survey on DLKT
A survey on deep learning based knowledge tracing是知识追踪领域在2022年的最新综述,文章评估了过往DLKT的各类模型,并将其分类和对比。笔者在阅读了该综述后进行了部分总结
2022-11-08 21:36:32
3038
2
原创 两篇知识追踪领域的中文综述解读
当今在线学习平台层出不穷,对于海量的教育数据,如何挖掘与分析以获得价值是一个重难点。知识追踪作为教育数据挖掘中对学生主体建模的关键技术受到业界的关注...
2022-08-01 11:59:58
828
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人