【基础课程】概率论

基本关系

  • 概率论中的事件A对应集合论中的集合A , 即.事件可以看作是集合。
    A ⊂ B A⊂B AB 在概率论中的意义 : 事件A发生必然导致事件B发生。

  • A − B = A ∩ B ‾ = A B ‾ = A − A B = ( A ∪ B ) − B A-B= A∩\overline B=A\overline B=A-AB=(A∪B)-B AB=AB=AB=AAB=(AB)B
    ( A ∩ B ) ‾ = A ‾ ∪ B ‾ ( A ∪ B ) ‾ = A ‾ ∩ B ‾ \overline{(A∩B)}=\overline A∪\overline B \quad\quad\quad \overline{(A∪B)}=\overline A∩\overline B (AB)=AB(AB)=AB
    分配律 : A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A∩(B∪C)=(A∩B)∪(A∩C) \quad\quad\quad A∪(B∩C)=(A∪B)∩(A∪C) A(BC)=(AB)(AC)A(BC)=(AB)(AC)

  • 加法公式 : 若A∩B=∅ 则 P(A∪B)=P(A)+P(B). 推论:若A⊃B则P(A-B)=P(A)-P(B). 因为A=(A-B)∪B且(A-B)∩B=∅

  • 乘法公式 : 对任意事件A与B都有 P(AB)=P(A)·P(B|A). 推论:P(ABCDE)=P(A)·P(B|A)·P(C|AB)·P(D|ABC)·P(E∣ABCD)

  • 容斥原理 : 加法公式的更一般情况, 计算任意一系列事件的   \, P( A 1 A_1 A1 A 2 A_2 A2∪···∪ A n A_n An)
    ······ P36 ······
    例如对任意事件都有 P(A∪B)=P(A)+P(B)-P(AB) , P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC).
    注 : 此公式中的积事件一般结合上述的乘法公式进行计算。 乘法公式实际上是分步(骤)的思想。

  • 全概率公式 : 设 B 1 B_1 B1, B 2 B_2 B2,…, B n B_n Bn是样本空间 Ω \Omega Ω的有穷剖分,则对任意事件A有 P(A)= Σ i \Sigma_i ΣiP(A| B i B_i Bi)·P( B i B_i Bi).
    思想 : 对 Ω \Omega Ω的分解

  • 贝叶斯公式 :

  • 一些小细节 :
    从条件概率P(A|B)=P(A∩B)÷P(B)不能得出P(A)与P(A|B)的必然关系, 不能说P(A)≤P(A|B)或P(A)≥P(A|B).



概率的计算

对于古典概率问题 (基本事件是有穷的且等可能发生的) :
  • 计算概率时, 分子分母要么同时用排列, 要么同时用组合。即.对于分子分母上的表达式, 考虑问题所站的角度要相同。
    注: 排列和组合的差异只在于是否需要考虑顺序。
  • 当被抽检对象的数目较大时, 可以把不返回抽样当作有返回抽样来简化计算。
  • 抽签的中奖率与抽签顺序无关。 e.g.盒子中n个红球m个白球, 每次不放回地取一个, 第k次取到的是红球的概率均为   p = n ⋅ A m + n − 1 k − 1 A m + n k = n m + n \,p=\frac{n·A^{k-1}_{m+n-1}}{A_{m+n}^k} = \frac{n}{m+n} p=Am+nknAm+n1k1=m+nn
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值