II. DIFFERENTIAL PRIVACY AND ITS FLAVORS
- 讨论各个差分隐私机制的优缺点
III. RENYI DIFFERENTIAL PRIVACY
-
ε
\varepsilon
ε-differential privacy的(利用Max Divergence)等价定义 :
\quad A randomized mechanism f f f is ε \varepsilon ε-differentially private if and only if its distribution over any two adjacent inputs D D D and D ′ D' D′ satisfies : D ∞ ( f ( D ) ∥ f ( D ′ ) ) ≤ ε \,\, D_\infty \big( f(D) \| f(D') \big) \le \varepsilon D∞(f(D)∥f(D′))≤ε
\quad 注: 此种等价定义在《The Algorithmic Foundations of Differential Privacy》一书中也有提及,详见 P 44 \mathcal P_{\mathcal{44}} P44
- 在此基础上进行拓展,(利用Renyi Divergence)得到Renyi differential privacy :
\quad A randomized mechanism f f f: D ↦ R \mathcal D \mapsto \mathcal R D↦R is said to have ε \varepsilon ε-Renyi differential privacy of order α \alpha α, or ( α \alpha α, ε \varepsilon ε)-RDP for short, if for any adjacent D D D, D ′ D' D′ ∈ D \in \mathcal D ∈D it holds that : D α ( f ( D ) ∥ f ( D ′ ) ) ≤ ε \,\, D_\alpha \big( f(D) \| f(D') \big) \le \varepsilon Dα(f(D)∥f(D′))≤ε
\quad 注: Renyi Divergence的定义中令 α \alpha α趋于无穷即得到 Max Divergence
- Renyi differential privacy 满足的 ε \varepsilon ε-differential privacy的一些性质
IV. RDP AND ( ε \varepsilon ε, δ \delta δ)-DP
- Renyi differential privacy 的定义也满足 ( ε ′ \varepsilon' ε′, δ ′ \delta' δ′)-differential privacy 的定义
Ref
I. Mironov. Renyi differential privacy. Private communication, 2016.