医学数据集集合

3D CT/MRI
1.ACDC dataset 是一个心脏3D MRI影像数据集,有100张,2017年ACDC挑战赛(Automated Cardiac Diagnosis Challenge)小约,大小1GB
下载地址:https://aistudio.baidu.com/aistudio/datasetdetail/56020
2.prostate datasets是MICCAI2018一个挑战赛的数据集,大小1.3GB,是一个前列腺癌分割的数据集,包含3D MRI影像 。
下载地址:https://www.kaggle.com/umashankar01/prostate-cancer-dataset
下载地址2:https://cdas.cancer.gov/datasets/plco/20/
3.MMWHS datasets是一个2017MICCAI挑战数据集,它提供20个标记和40个未标记CT体积,以及20个标记和40个未标记MR体积 也不大,大概1GB左右
下载地址:http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/

4.COPDGene Dataset 肺部疾病数据集 3D CT
COPD is a lung disease that makes
it difficult to breathe. The COPDGene Study (Regan et al.
2011) is a multi-center observational study designed to iden-
tify the underlying genetic factors of COPD. We use a large
set of 3D thorax computerized tomography (CT) images of
9,180 subjects from the COPDGene dataset in our study.

Mosmed COVID-19 CT Scans
We use 3D CT scans of 1,110 subjects
from the MosMed dataset (Morozov et al. 2020) provided by
municipal hospitals in Moscow, Russia. Based on the sever-
ity of lung tissues abnormalities related with COVID-19, the
images are classified into five severity categories associated
with different triage decisions. For example, the patients in
the mild category are followed up at home with telemedicine
monitoring, while the patients in the critical category are im-
mediately transferred to the intensive care unit.
下载地址https://www.kaggle.com/datasets/andrewmvd/mosmed-covid19-ct-scans

2D
1.MIMIC-CXR x光胸片的数据集,大小约600G 371,920张X光胸片
2.cheXpert 224316张x光胸片,

### ACDC 数据集中的极端天气数据分析 ACDC(Adverse Conditions Driving Challenge)数据集专注于自动驾驶汽车在不同恶劣环境条件下的感知能力。该数据集包含了多种复杂场景的数据,特别是针对极端天气情况进行了详细的记录和标注。 #### 极端天气类别 ACDC 数据集涵盖了雨天、雪天以及雾天等多种典型极端天气状况。这些不同的气象条件下采集到的数据能够帮助研究者更好地理解传感器性能的变化及其对物体检测准确性的影响[^1]。 #### 数据特点 为了应对各种复杂的自然现象,在每种特定类型的环境中都收集了大量的图像样本,并且提供了高精度的地图信息作为辅助材料。此外,还特别标记了一些关键因素如积水程度、积雪厚度等参数来描述具体的路况特征[^2]。 #### 应用领域 通过对这类特殊环境下获取的信息进行深入挖掘分析,可以有效提升模型对于缺失数据的鲁棒性处理能力,从而改善预测效果并增强系统的可靠性[^3]。 ```python import os from acdc_dataset import load_data # 假设有一个加载ACDC数据集的方法 def analyze_extreme_weather(): """ 分析ACDC数据集中关于极端天气的数据。 """ path_to_acdc = 'path/to/acdc/dataset' if not os.path.exists(path_to_acdc): raise FileNotFoundError('指定路径不存在') data = load_data(path_to_acdc) rain_samples = [sample for sample in data if sample['weather'] == 'rain'] snow_samples = [sample for sample in data if sample['weather'] == 'snow'] fog_samples = [sample for sample in data if sample['weather'] == 'fog'] print(f'Rain samples count: {len(rain_samples)}') print(f'Snow samples count: {len(snow_samples)}') print(f'Fog samples count: {len(fog_samples)}') analyze_extreme_weather() ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值