医学数据集

TotalSegmentator是三维医学图像分割领域最大的公开数据集,包含CT和MRI图像,涵盖全身多种解剖结构。CT部分有1204张图像,MRI部分有298例,提供多样性和临床相关性的丰富数据,适用于深度学习和图像处理的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全身影像数据集介绍

1、TotalSegmentator数据集

是目前三维医学图像分割领域的最大公开数据集,包括 1204 张 CT 图像,覆盖全身的 104 种解剖结构。其中,1082张用于训练,57张用于验证,65张为测试集。与大多数仅聚焦于部分器官且数据量有限的数据集不同,TotalSegmentator 提供了前所未有的数据规模和多样性,更好地适应了临床的多变场景。此数据集不仅覆盖了常见器官,还标注了其他数据集中罕见的结构,为模型研究和优化提供了坚实基础。

数据集原信息

标签信息统计

可视化

文件结构


2、TotalSegmentator MRI 

数据集包含了 298 例 MR 图像,并提供多达 56 种不同常用解剖结构的分割标注。其中,251 例 MR 图像来自 2011 年至 2023 年间巴塞尔大学医院的图像存档和通信系统(PACS),另外 47 例 MR 图像来自影像数据共享平台(Imaging Data Commons,IDC),以增加图像的多样性。该数据集源自日常临床工作中的随机抽样,代表了一个可推广到临床应用的真实世界数据集。它涵盖了各种不同的病变、扫描仪、成像序列和来自不同医疗机构的数据。值得注意的是,尽管官方论文提到包含 59 种类别,但公开的数据集中仅提供 56 类标注,略有差异。

磁共振成像(MRI)能够在不使用电离辐射的情况下提供人体详细解剖图像,对于神经系统疾病、肌肉骨骼损伤等多种临床诊断至关重要。尽管 TotalSegmetator (CT) 数据集已被广泛使用,但 MRI 图像分割仍面临挑战,主要是由于不同序列和身体部位的成像参数和协议变化,影响算法的普遍性和准确性。TotalSegmentator MRI 数据集扩展了处理各种 MRI 图像的能力,旨在开发一个开源且易用的分割模型,能够自动且稳健地分割主要解剖结构,而不依赖于具体的 MR 序列。

数据集元信息

标签信息

文件列表

<think>好的,用户想了解如何安装TotalSegmentator这个Python医疗图像分割工具。首先,我需要回忆一下相关的引用内容。根据引用[3],TotalSegmentator主要使用Python,并依赖PyTorch和nnUNet框架。安装步骤可能涉及Python环境配置、安装依赖库等。 首先,用户可能需要安装Python,推荐3.8或更高版本。然后,使用pip安装TotalSegmentator包,命令可能是pip install TotalSegmentator。不过,有时候需要从Git仓库安装最新版本,比如使用pip install git+https://...,这在引用[3]的项目地址里有提到。 另外,PyTorch的安装可能需要根据系统是否有CUDA支持来选择不同的版本。通常官网会给出安装命令,比如pip3 install torch torchvision torchaudio。nnUNet作为关键依赖,可能需要单独安装,或者已经被包含在TotalSegmentator的依赖中。 还要注意数据集的准备,引用[4]提到数据集的结构,但安装时可能不需要手动下载数据,工具可能自动处理。用户可能会遇到依赖冲突,建议使用虚拟环境,比如venv或conda。 需要检查是否有其他依赖项,比如SimpleITK或nibabel处理医学图像格式。可能还需要安装BatchGenerators等库,这些可能在安装时自动解决,但最好在回答中提及。 总结步骤应该是:创建虚拟环境,安装PyTorch,安装TotalSegmentator,验证安装。同时提醒用户注意Python版本和CUDA配置。如果有错误,建议查看官方文档或社区支持。此外,引用提供的项目地址和安装示例可以帮助用户正确执行步骤。</think>以下是TotalSegmentator的详细安装步骤,基于官方推荐配置和医学图像处理的最佳实践[^3][^4]: ### 一、环境准备 1. **Python版本要求** 推荐使用$Python \geq 3.8$,通过以下命令验证: ```bash python --version ``` 2. **创建虚拟环境(推荐)** ```bash conda create -n totals_env python=3.8 conda activate totals_env ``` ### 二、核心依赖安装 1. **安装PyTorch** 根据CUDA版本选择对应命令(无GPU用户使用CPU版本): ```bash # CUDA 11.x pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 # CPU only pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` 2. **安装TotalSegmentator本体** ```bash pip install TotalSegmentator ``` ### 三、医学图像处理依赖 ```bash pip install SimpleITK==2.1.1 nibabel==4.0.2 pydicom==2.3.1 ``` ### 四、验证安装 ```python from Totalsegmentator import Totalsegmentator ts = Totalsegmentator() ts.show_available_tasks() # 应显示>100个解剖结构分割任务 ``` ### 五、进阶配置(可选) 1. **nnUNet框架配置** 设置环境变量指定缓存目录: ```bash export nnUNet_raw="/path/to/nnUNet_raw" export nnUNet_preprocessed="/path/to/nnUNet_preprocessed" export nnUNet_results="/path/to/nnUNet_results" ``` 2. **GPU加速设置** 在代码中显式指定GPU设备: ```python import torch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ts = Totalsegmentator(device=device) ``` **注意**:完整安装包约需15GB磁盘空间,首次运行会自动下载预训练模型(约10GB)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值