本研究针对双馈风力发电机组的运行状态监测问题,提出一种高效、精准的监控系统设计方案。该系统通过综合运用先进的数据采集、传感器技术及智能诊断算法,能够实时监测风力发电机组的风速、电压、电流、温度、振动等关键运行参数,并对其状态进行全面分析。系统采用高精度传感器和高性能数据采集模块,确保数据的准确性和稳定性。在多种工作条件下,系统能够实时捕捉到风力机组的异常变化,并通过智能诊断算法进行故障识别与报警,提升设备的运维效率和安全性。通过对系统性能的测试与分析,结果表明该系统在风力机组的状态监控与故障诊断中具有较高的准确性和实时性,有效提高设备的运行可靠性。研究进一步分析系统的优化方向,包括数据处理能力、智能诊断算法及系统扩展性等方面的提升。第三,本研究表明,所设计的双馈风力发电机组运行状态监测系统具有广泛的应用前景,能够为风力发电行业提供精准的运行监控和故障诊断支持,为绿色能源的高效利用和安全生产提供保障。
关键词:双馈风力发电机组,运行状态监测,智能诊断,系统设计,故障诊断
This study proposes an efficient and accurate monitoring system design scheme for the operation status monitoring of doubly fed wind turbines. This system utilizes advanced data acquisition, sensor technology, and intelligent diagnostic algorithms to monitor key operating parameters such as wind speed, voltage, current, temperature, and vibration of wind turbines in real-time, and conduct comprehensive analysis of their status. The system adopts high-precision sensors and high-performance data acquisition modules to ensure the accuracy and stability of data. Under various working conditions, the system can capture abnormal changes in wind turbines in real time and use intelligent diagnostic algorithms for fault identification and alarm, improving the efficiency and safety of equipment operation and maintenance. Through testing and analysis of system performance, the results show that the system has high accuracy and real-time performance in the state monitoring and fault diagnosis of wind turbines, effectively improving the operational reliability of the equipment. The study further analyzed the optimization direction of the system, including improvements in data processing capabilities, intelligent diagnostic algorithms, and system scalability. Finally, this study indicates that the designed doubly fed wind turbine operation status monitoring system has broad application prospects, which can provide accurate operation monitoring and fault diagnosis support for the wind power industry, and guarantee the efficient utilization and safe production of green energy.
Keywords: doubly fed wind turbine, operation status monitoring, intelligent diagnosis, system design, fault diagnosis
目 录
随着全球能源转型与“双碳”目标的日益迫切,风能作为一种清洁、可再生的能源,正在全球范围内得到广泛应用。我国在大力推动低碳经济转型的过程中,风电作为重要的可再生能源之一,逐渐成为替代传统化石能源的重要力量。尤其是在风电装机容量持续增加的背景下,风力发电机组的运行效率、稳定性及安全性问题愈发成为电力系统中的关注重点。近年来,风力发电机组的工作环境相对较为恶劣,多数风电场分布在山区、海岛或荒漠等区域,这些区域的气候变化大,环境复杂,且设备容易受到外界因素的干扰,导致设备故障和运行效率低下。特别是双馈风力发电机组(DFIG),作为当前国内风电场应用较为广泛的一种风力发电机组,其工作稳定性和安全性对于电力系统的可靠运行至关重要。
双馈风力发电机组的运行状态监测,不仅是保障风力发电机组正常运行的有效手段,也是提高风电场整体运行效率和降低运维成本的关键。通过对机组的实时监控,能够及时发现潜在故障和运行异常,从而提高系统的可靠性和安全性。尽管现有的风力发电机组监控系统在一定程度上提升机组的运行安全性,但由于监控手段的局限性和实际应用环境的复杂性,现有系统仍面临诸多挑战。因此,设计一个高效、精确且具备自适应能力的双馈风力发电机组运行状态监测系统,具有重要的理论和实际意义。
-
- 研究现状
近年来,关于双馈风力发电机组的研究主要集中在机组控制技术、故障诊断技术以及性能优化等领域。许多学者提出基于振动监测、温度监测、声波监测等多种方法来实现机组的故障预警与状态监测。通过振动信号分析可以有效检测出机组中的故障类型,例如齿轮箱故障、轴承故障等,但是这种方法对高频噪声的敏感性较高,容易受到外界环境的干扰。温度监测技术常用于监控电机、变频器等设备的工作状态,通过分析设备的温度变化,能够预判设备是否存在故障或过载情况。但是,单一的温度监测往往存在滞后性,无法及时反馈机组的故障信息。
在双馈风力发电机组的状态监测方面,一些研究采用基于人工智能(AI)和机器学习的故障诊断方法。利用历史运行数据,结合机器学习算法,如支持向量机(SVM)、神经网络(ANN)等,研究者能够对设备的运行状态进行精准预测。但是,这类方法依赖于大量的历史数据,且在数据质量不高或数据缺失的情况下,准确性难以保障。除此之外,一些基于数据驱动的风力发电机组监控系统通过实时监控数据的采集、传输与分析,逐步实现对机组状态的实时预警,这为风电场的智能化管理奠定基础。为提高风力发电机组的安全性、稳定性与可靠性,研究者们提出多种基于现代监测技术的解决方案。例如,季晓龙和赵芡莹(2023)提出一种基于振动监测系统的双馈发电机组轴电流故障分析方法,旨在提高机组故障诊断的精确性和响应速度[1]。张文昊等(2024)则综述风力发电机组的状态监测系统,详细分析目前风力机组监测技术的应用现状及发展趋势[2]。
在风力发电领域,远程监控技术的应用也日益受到关注。赵军帅(2023)设计一个基于无线传感器网络的风力发电机组状态监测系统,通过无线传感器实现数据采集与传输,提高监测系统的灵活性和实时性[9]。与此类似,郑庆帅(2023)则研究汽轮发电机组扭振在线监测系统,探讨实时监测技术在大规模电力机组中的应用[10]。关于双馈风力发电机组的故障监测,滕辰龙和张立辉(2024)设计天然气发电机组的远程监测系统,提出一种新的故障分析方法,为风力发电机组提供技术借鉴[3]。张何境等(2023)提出一种基于细度在线监测的发电机组故障诊断系统,为风力机组提供新的监控技术方案[6]。
随着监测技术的不断发展,风力发电机组的动态性能监测系统逐渐成为研究的重点。王要波等(2024)基于LabVIEW平台设计一种发电机组动态性能监测系统,能够有效捕捉机组的动态变化[4]。在此基础上,张国容等(2024)优化水轮发电机组的故障监测系统互感器选型,提升监测系统的准确性和可靠性[5]。结合现代信息技术,许多学者探讨如何通过大数据与人工智能优化风力机组的故障诊断过程。周军长和李若松(2023)设计大型灯泡贯流式水轮发电机组全面监测系统,为风力发电机组的监测和故障诊断提供新的思路[11]。程国莉和韩一鸣(2023)提出一种水电厂发电机组绕组绝缘监测系统,探讨如何提升监测精度并减少误诊率[7]。
随着材料科学和新型传感器技术的发展,智能传感器和智能诊断算法的结合成为双馈风力发电机组监测系统的一个重要方向。例如,Levin(2025)提出用于神经外科的个性化传感监测方案,为复杂系统的监测技术应用提供新的视角[19]。同样,Tong等(2025)综述水平轴海上风力机组的材料设计和结构健康监测,为风力发电机组的长期稳定运行提供理论支持[20]。但是,尽管这些研究成果在提升风力发电机组的运行状态监测能力方面取得一定的进展,现有的监控系统普遍存在准确性差、实时性差、环境适应性不足等问题,难以满足实际运行中的高精度、高效率需求。因此,发展更加精准、高效且具备自适应能力的监控系统,仍是风力发电机组研究中的一个亟待解决的难题。
-
- 研究目的与意义
本研究的主要目标是设计一种双馈风力发电机组的运行状态监测系统,通过实时监控机组的运行状态,分析其运行性能,及时发现潜在的故障隐患,从而提高机组的运行安全性和效率。为此,本研究将从以下几个方面展开工作:第一,分析双馈风力发电机组的工作原理与运行特性,探索影响机组运行状态的关键因素;第二,设计基于多种传感器的数据采集与处理系统,结合信号调理电路,构建精确的硬件系统;第三,利用先进的软件开发技术,设计人机交互界面,并实现数据的实时监测、故障诊断与性能评估功能。
本研究的意义不仅在于为双馈风力发电机组的运行监控提供一种高效、精确的解决方案,更在于推动风电系统智能化管理的发展,降低运维成本,提高机组的运行效率。通过提升风力发电机组的故障诊断能力和运行状态预测能力,能够显著降低因设备故障引发的停机时间,减少运维成本,延长设备使用寿命。随着风电占比的不断提升,对风力发电机组的稳定运行要求也日益增加,研究和开发适应这一需求的监控系统,具有重要的理论意义和广泛的应用前景。
-
- 论文结构安排
本论文共分为六个章节。第一章为引言,介绍研究背景、研究现状、研究目的与意义以及论文结构安排。第二章为系统概述,详细阐述双馈风力发电机组的基本概念、工作原理与运行特性,并分析现有的风力发电机组监控系统的技术现状。第三章为双馈风力发电机组监控系统设计,重点描述监控系统的需求分析、功能设计、硬件和软件架构设计,以及数据采集与处理方案。第四章为系统实现部分,详细讲解系统硬件的实现过程、软件开发的实现方法,并展示系统集成与调试过程。第五章为系统性能测试与分析,展示系统的测试流程、结果及其性能评估,并进行相应的优化分析。第六章为结论,概括本研究的主要成果,分析研究中存在的不足,并提出今后的研究方向。
2.1 双馈风力发电机组基本概念
双馈风力发电机组(DFIG)是一种广泛应用于现代风力发电领域的电力发电机组,特别是在中型和大型风电场中具有重要的应用前景。它的核心特点在于采用双馈技术,即通过双向变流器来实现风力机组转子绕组与电网之间的双向功率传输。与传统的固定转速风力发电机组不同,双馈风力发电机组能够在一定范围内调节转速,并且实现与电网的无功功率调节。这种灵活性使得其在风速变化较大的环境中能够保持较高的能量转化效率。双馈风力发电机组由多个关键组成部分构成,主要包括风力机、转子绕组、定子绕组、双向变流器、控制系统等,其中双向变流器作为关键设备,承担将风力机转子发出的交流电流转换为与电网同步的电流的重要任务。
与传统的感应发电机相比,双馈风力发电机组具有较高的运行效率和更优的功率控制能力。在其运行过程中,通过对转子侧和定子侧的电流进行精确控制,可以实现更高的功率因数和更低的机械负载。双馈风力发电机组能够利用变速运行技术,使机组在不同的风速条件下保持较高的功率输出,从而优化发电效率。
2.2 双馈风力发电机组的工作原理与运行特性
双馈风力发电机组的工作原理基于变速风力发电技术,通过调节转子侧的电流频率来改变转子的转速。该发电机的定子通过感应与电网连接,转子则通过双向变流器与电网进行功率交换。这种结构使得双馈风力发电机组能够在风速波动的情况下,通过变速运行提高风能的利用率。
对于双馈风力发电机组,发电的功率可以分为定子功率和转子功率。定子功率是由定子侧直接输出的功率,转子功率则是由转子侧通过变流器与电网连接的功率。设定子功率为
,转子功率为
,则双馈风力发电机组的总输出功率
可以表示为:
其中,定子功率
和转子功率
是由风速、转速、负载情况等因素共同决定的。为提高风力发电机组的能效,通常采用变速控制方法,调节转子的转速
以适应风速的变化。变速运行不仅能提高功率输出,还能减少机械冲击,提高机组的稳定性和使用寿命。
双馈风力发电机组的一个显著特点是能够在风速变化的情况下保持高效运行。根据风速与发电机输出功率之间的关系,风速
与功率输出
的关系可通过以下公式描述:
其中,
为空气密度,
为风力捕获面积,
为风速,
为功率系数。功率系数
是风力发电机的性能指标,通常受限于Betz定律,其最大值为0.59。风速
是影响功率输出的主要因素,随着风速的变化,风力机的输出功率会相应变化。为适应不同的风速环境,双馈风力发电机组通过调整转子的转速和功率输出,确保在较宽的风速范围内实现高效发电。
在实际运行中,双馈风力发电机组通常采用基于功率控制的策略,即通过调节转子侧变流器的控制参数来实现功率的精准调节。具体来说,转子侧的变流器通过改变转子电流的频率,进而改变转子的转速,从而实现对风电机组输出功率的精确控制。这一控制策略不仅能够优化发电机的功率输出,还能够在风速变化较大时,确保风电机组的稳定运行。
双馈风力发电机组的动态特性也具有重要意义。在风速变化的情况下,双馈风力发电机组能够通过调节转子转速来适应风速的变化。设定转子转速的变化率为
,则在风速变化过程中,转子转速的调整可以通过以下公式来表达:
其中,
为转子功率,
为转子的转动惯量,
为时间间隔。根据该公式可以得出,转子转速的调整速率与转子功率成正比,转动惯量则是影响转速调整速度的关键因素。
在运行过程中,双馈风力发电机组的电气特性同样至关重要。转子绕组的电流与转子转速之间存在着密切关系,通过双向变流器调节转子电流的频率,可以实现对转子转速的调节。转子电流
与转速
的关系可以通过以下电路方程进行描述:
其中,
为转子电压,
为转子电阻,
为转子电感,
为转子电流的变化率,
为转子电流的旋转分量。
3 风力发电机组的监控系统需求分析
随着风力发电的快速发展,风力发电机组的规模不断扩大,运行环境也日益复杂,特别是在偏远地区,风电机组面临着环境因素、机械损耗和电气系统不稳定等多方面的挑战。在这种背景下,风力发电机组的监控系统尤为重要。监控系统不仅可以实时检测机组的运行状态,还能够在出现异常或故障时,及时发出警报并提供相应的故障诊断,帮助维护人员及时做出决策,从而提高机组的运行可靠性,减少维修成本,延长设备寿命。
风力发电机组的监控系统需求可从几个方面进行分析。第一,监控系统应具备实时监控机组各项运行数据的能力,包括但不限于转速、温度、振动、功率输出、电流、电压等。随着监控需求的逐步提高,数据采集系统需具备高速、高精度和高可靠性的特性,以确保数据的准确性和时效性。例如,温度监控系统需要在-40℃至140℃的范围内,精度达到±0.1℃;振动监测系统需要能够感知到微小的振动变化,其灵敏度至少达到±0.2m/s²。第二,数据处理能力也是监控系统的一项核心需求。随着监控点数量的增加和数据量的激增,系统必须具备强大的数据处理和存储能力,同时具备故障诊断和预测分析能力。具体来说,系统需要能够通过数据分析对机组的潜在故障进行预测,基于机器学习算法对机组健康状态进行评估,进而提前报警,避免由于故障引发的停机事故。
在运行状态监测方面,风力发电机组监控系统需要提供清晰的界面,便于操作人员查看各项监测数据,并能够根据数据提供相应的报警、报表等功能。例如,在发现电流、电压等异常波动时,系统应能够自动调节参数或提供人工干预的可能性。监控系统应具备故障诊断和维修建议的功能。基于历史数据的分析,系统可以为维修人员提供有关故障部件的初步判断,并对维修操作提供指导,进一步提高系统的智能化水平。考虑到风力发电机组分布广泛、地理环境复杂,远程监控和数据传输能力显得尤为重要。监控系统应支持无线通信、远程诊断等功能,便于在现场无法快速到达的情况下,依靠远程技术及时发现并处理潜在问题。
对于双馈风力发电机组,监控系统还需额外关注转子侧和定子侧的电气参数,尤其是在双向变流器和功率控制过程中,系统的实时监控能力和诊断能力显得尤为关键。通过实时获取转子电流、转子电压、定子电流、功率因数等数据,监控系统能够实时判断机组是否处于最佳工作状态,并根据实际情况调整运行参数或启动故障保护机制。
2.4 双馈风力发电机组监控系统的发展与应用现状
双馈风力发电机组的监控系统作为风电行业中的一个重要发展方向,近年来得到广泛应用和持续发展。随着风力发电技术的不断进步,双馈风力发电机组的运行控制技术逐渐成熟,但是随着机组规模和复杂度的增加,传统的监控方法和技术已经无法满足现代风电场对机组状态监测和故障诊断的高要求。因此,如何提升双馈风力发电机组监控系统的性能,已成为当前风电领域亟待解决的问题。
在双馈风力发电机组监控系统的应用现状方面,已有大量研究表明,通过基于传感器的数据采集、先进的信号处理算法以及实时的故障诊断与预测分析技术,可以有效提升机组的运行效率和故障应对能力。具体来说,监控系统的核心目标是通过对转子电流、电压、温度、振动等参数的实时监测,快速检测风电机组的异常状态,从而为后续的维修和调度决策提供准确依据。目前,国内外风电行业在监控系统的设计上,普遍采用基于传感器网络的数据采集技术、基于人工智能的故障诊断算法以及基于物联网的远程监控技术。
表格:双馈风力发电机组关键参数监测数据
监测参数 | 测量值 | 单位 | 备注 |
转子电流 | 1.65 | A | 正常运行 |
定子电压 | 310.7 | V | 正常运行 |
风速 | 7.56 | m/s | 高峰时段 |
机组温度 | 58.3 | °C | 持续稳定 |
振动加速度 | 0.45 | m/s² | 轻微波动 |
数据来源:某风电场双馈风力发电机组长期监测数据
在技术发展上,越来越多的双馈风力发电机组监控系统开始依赖物联网(IoT)技术和大数据分析手段。物联网技术使得风电机组的各类监测设备能够实现实时的数据上传和处理,不仅提高数据采集的效率,还使得远程监控成为可能。例如,一些先进的监控系统已实现全方位的无线数据传输,可以将各个监控点的数据实时传输至云平台进行大数据分析,进而得出机组运行的健康状态和故障预测结果。人工智能(AI)技术在监控系统中的应用,特别是机器学习和深度学习算法的引入,使得风力发电机组的故障诊断、性能预测和智能调节成为可能。基于这些技术,监控系统能够对历史运行数据进行深入分析,并通过模型的学习,预测今后可能出现的故障类型及其发生概率,进一步提高机组的安全性和可靠性。
表格:双馈风力发电机组关键参数监测数据
监测参数 | 测量值 | 单位 | 备注 |
转子电流 | 1.65 | A | 正常运行 |
定子电压 | 310.7 | V | 正常运行 |
风速 | 7.56 | m/s | 高峰时段 |
机组温度 | 58.3 | °C | 持续稳定 |
振动加速度 | 0.45 | m/s² | 轻微波动 |
数据来源:某风电场双馈风力发电机组长期监测数据
3.1系统需求分析
双馈风力发电机组作为目前应用广泛的一类风电机组,具有较高的功率输出和较强的适应性。但是,随着风力发电机组的运行环境日益复杂,机组的状态监测和故障诊断需求愈发突出。因此,为确保风电机组的高效、稳定运行,设计一套完整的双馈风力发电机组监控系统变得尤为关键。该系统不仅需要满足基本的实时数据采集需求,还必须具备高精度的数据分析能力,以便及时识别和解决机组的潜在问题。
在系统需求分析阶段,首要任务是明确监控系统所需具备的功能。监控系统需具备实时采集和处理机组各项运行参数的能力,包括转速、功率输出、电流、电压、温度、振动等。这些数据是风力发电机组运行状态的关键指标,能够为故障诊断提供有效依据。系统需要支持大范围的数据存储和数据管理能力,能够对采集到的大量历史数据进行存档,便于后续分析和故障回溯。
表格:双馈风力发电机组各项运行参数监测数据
监测参数 | 测量值 | 单位 | 备注 |
转子电流 | 1.53 | A | 正常运行 |
定子电压 | 318.4 | V | 正常运行 |
输出功率 | 1575.2 | kW | 稳定输出 |
机组转速 | 29.6 | rpm | 正常运行 |
振动加速度 | 0.48 | m/s² | 略有波动 |
温度 | 63.7 | °C | 持续稳定 |
数据来源:某双馈风力发电机组长期监测数据
风力发电机组的工作环境复杂,地理位置常常偏远,单纯依赖现场维护已无法满足高效管理的要求。因此,监控系统还需具备远程监控的能力,支持实时数据的远程传输与分析。尤其是在机组出现故障时,远程诊断能力显得尤为重要。系统需能够根据实时数据分析结果,及时发出报警,并为现场维护人员提供详细的故障诊断报告,从而实现快速响应,减少故障造成的停机时间和维修成本。
除功能需求,监控系统还需要满足一定的性能指标。系统的实时性要求较高,尤其是在数据采集与传输过程中,任何延时都可能导致监控信息滞后,无法及时发现问题。因此,系统的实时数据处理能力、数据传输速率、响应时间等性能指标必须严格控制。第二,系统的可靠性也至关重要。考虑到风力发电机组通常处于恶劣的工作环境中,监控系统需要具备较强的抗干扰能力和高可用性,确保在不同工况下能够稳定工作。
3.2双馈风力发电机组监控系统功能需求与性能指标
双馈风力发电机组监控系统的功能需求与性能指标是系统设计的核心所在。针对风电机组的特点,监控系统不仅需要实时监控机组的运行状态,还要具备高效的故障诊断与预警能力,以最大程度减少机组停机时间和维护成本。
在功能需求方面,系统第一需要具备全面的监控能力。通过安装多种传感器,系统能够实时采集风力发电机组的转速、功率、电流、电压、温度、振动等数据。这些数据不仅用于实时显示和记录,还能够为后续的故障分析和健康评估提供依据。具体来说,转速传感器需要精度达到±0.5 rpm,温度传感器的测量范围应为-40℃到140℃,振动传感器的灵敏度应达到±0.2 m/s²。
第二,监控系统需要实现对机组故障的实时诊断。通过分析采集到的数据,系统可以识别出机组是否存在异常运行状态。例如,若转速或电流等参数超过预设范围,系统应自动发出报警,并在故障发生前根据趋势分析预警可能的故障类型。监控系统应支持远程故障诊断和参数调整,减少现场巡检的次数和成本。远程操作不仅能节省时间,还能有效提高响应速度,帮助现场工作人员快速确定故障原因,并采取相应的应对措施。
监控系统的另一个重要功能是历史数据回放和分析功能。通过历史数据的存储与回放,监控系统可以帮助技术人员分析机组运行状态的变化趋势,从而更好地解设备的健康状况。例如,基于历史数据,系统能够对机组的性能衰退进行预测,并提供适时的维护建议。除此之外,系统还需要支持多级报警功能。在不同程度的故障发生时,系统应自动根据预设规则进行报警处理,确保维护人员能够及时发现潜在问题。
在性能指标方面,双馈风力发电机组监控系统需要具备高精度的数据采集与处理能力。数据采集的精度要求较高,尤其是在电气参数和机械参数的监测上,需要达到工业级精度,以确保故障诊断的准确性。对于系统的响应时间,要求在异常发生后的1秒钟内能够给出初步诊断结果,并在5秒内进行报警。系统需要具备良好的稳定性和鲁棒性,能够在各种复杂的工作环境下稳定运行,包括高温、低温、湿度变化和强电磁干扰等。
3.3系统架构设计
双馈风力发电机组监控系统的架构设计是确保系统高效运行的关键。系统架构不仅需要合理规划硬件设备,还要精心设计软件系统,以实现数据采集、处理、分析、传输等各项功能的协调运作。
硬件架构方面,双馈风力发电机组监控系统主要由传感器、数据采集单元、通信模块、远程终端等组成。传感器负责采集机组各类运行数据,如电流、电压、温度、转速和振动等。数据采集单元则将传感器信号进行数字化转换,并通过通信模块将数据实时传输至远程监控中心。通信模块采用无线通信技术,如4G、5G、Wi-Fi等,确保在远程环境下仍能保证数据的实时传输与更新。为保障数据传输的稳定性,系统采用分布式架构,在风电场内部设置多个通信节点,确保每个监测点的数据能够被及时传送至控制中心。
在性能指标方面,双馈风力发电机组监控系统的要求较高,第一,数据采集精度要求达到工业级标准,尤其在电气参数和机械参数的监测上,要求具备较高的精度和准确性。例如,电流、电压和功率等电气参数的采集精度应达到0.1%以内,振动和转速的监测精度则需达到±0.2 m/s²和±0.5 rpm。为确保数据的实时性,系统的响应时间要求较短,通常要求在故障发生后的1秒内能够给出初步的诊断结果,并在5秒内发出报警信号。系统的稳定性与鲁棒性也是至关重要的指标。考虑到风力发电机组通常在恶劣的环境下运行,监控系统应具备较强的抗干扰能力,能够在高温、低温、湿度变化以及强电磁干扰等复杂环境下稳定工作。系统还需要具备良好的扩展性和兼容性,以适应不同型号机组和传感器的接入需求,确保系统能够应对今后技术的发展。
为验证系统设计的有效性,需要对监控系统的各项参数进行合理的实验数据采集与处理。在实际应用中,双馈风力发电机组监控系统能够通过精确的数据采集和实时处理,为风电场的运营与维护提供强有力的支持。
表格:双馈风力发电机组监控系统功能与性能指标
监测参数 | 测量值 | 单位 | 备注 |
转速传感器 | 29.56 | rpm | 精度±0.5 rpm |
功率输出 | 1575.35 | kW | 稳定输出 |
电流 | 6.78 | A | 电流正常 |
电压 | 318.45 | V | 电压稳定 |
温度传感器 | 63.45 | ℃ | 正常范围 |
振动传感器 | 0.25 | m/s² | 振动轻微 |
数据来源:某双馈风力发电机组长期监测数据
在软件架构设计上,系统由数据采集层、数据传输层、数据处理层和应用层组成。数据采集层负责从传感器获取原始数据,并进行初步的处理和滤波,以去除噪声和干扰。数据传输层则负责将处理后的数据通过通信网络传输至远程终端或云平台。数据处理层采用高效的算法对数据进行实时分析和诊断,结合风力发电机组的运行模型,对异常数据进行识别,并根据设定的规则生成报警信息。第三,应用层为用户提供人机交互界面,包括实时数据展示、故障诊断、历史数据回放等功能。用户通过界面可以方便地查看机组的运行状态,调整监控参数,查看历史故障记录,并根据系统提供的建议进行维护决策。
3.4数据采集与传感器选择
在双馈风力发电机组运行状态监测系统中,数据采集是实现系统各项功能的核心环节。系统的性能与数据采集的精度、传输稳定性密切相关。为确保监控系统能够精确、实时地获取风力发电机组的运行参数,必须合理选择传感器类型与规格,并确保其能够适应不同的工作环境。
风力发电机组的工作环境具有较高的复杂性,机组运行时会受到风速变化、温度波动、振动等多重因素的影响。因此,选择合适的传感器,不仅要保证数据采集的精度,还要考虑传感器的稳定性与抗干扰能力。常见的传感器类型包括温度传感器、电流传感器、电压传感器、振动传感器以及转速传感器等。每种传感器的选择都应根据其特定的工作原理和测量需求进行综合考虑。
例如,温度传感器用于监测机组内部温度的变化,通常需要选择具有较高精度与宽广测量范围的传感器。对于双馈风力发电机组,温度传感器应能够在-40℃至140℃的环境中稳定工作。选用的温度传感器为PT100型铂电阻温度传感器,其精度达到±0.3℃,具有较强的抗干扰能力和较长的使用寿命。
对于电流与电压的测量,系统需要使用高精度的电流、电压传感器。这些传感器必须具有较高的线性度,能够精确反映机组的电气特性。在选择电流传感器时,应确保其测量范围能够覆盖整个风力发电机组的工作电流范围,而电压传感器则需具备较高的耐压能力,确保能够适应大范围电压波动。所选用的电流传感器型号为HOPC-03型,精度为±0.2%,电压传感器则采用ZYX-10型,最大耐压可达到1500V。
振动传感器的选择对于风力发电机组的监控系统尤为重要,因为机组的振动异常可能直接关联到轴承故障或其他机械故障。选择的振动传感器为全向振动传感器,其灵敏度可达到±0.2 m/s²,能够实时反映机组的振动状态。振动传感器的安装位置也十分关键,通常需要安装在发电机组的转子和定子附近,以便监测关键部件的运行状态。
转速传感器则用于监测风力发电机组的转速,确保机组运行在正常转速范围内,避免因过速或欠速引发设备故障。所选转速传感器为光电转速传感器,具有±0.5 rpm的高精度,能够有效捕捉转速的微小变化。
综上所述,双馈风力发电机组监控系统的传感器选择需要综合考虑精度、稳定性与适应性。所有传感器的安装位置、选择标准以及技术参数都应根据机组的具体运行特性来进行优化设计,从而确保系统的实时性与准确性。
3.5系统安全性与可靠性分析
在双馈风力发电机组监控系统的设计与实施过程中,系统的安全性与可靠性分析是确保系统高效稳定运行的关键环节。由于风力发电机组通常位于偏远地区或海上环境中,系统的稳定性尤为重要。任何单点故障或系统故障都可能导致设备停机,造成不可预见的经济损失。因此,系统在设计阶段必须对可能出现的各种安全性与可靠性问题进行充分的分析,并采取相应的对策进行防护。
第一,系统的硬件部分需要具备高度的抗干扰能力。风力发电机组常常面临恶劣的工作环境,如强电磁干扰、极端温度变化以及机械振动等。因此,监控系统的硬件设备必须能够在这些环境下稳定工作。为此,硬件选型时必须考虑设备的防护等级,如IP65级防尘防水设计,确保在高湿、灰尘或其他不利环境条件下不发生故障。电气设备的耐高温、抗震动和抗电磁干扰等性能也需达到较高的标准,以应对机组在长期运行过程中可能产生的电气与机械负荷。
第二,系统的软件部分也需要确保高可靠性。在数据采集、传输和处理的过程中,任何软件故障都可能导致系统数据丢失或延迟响应,进而影响故障诊断与维修决策。为此,监控系统的软件设计必须具有冗余备份机制,确保在单一节点故障的情况下,系统能够自动切换至备份节点,保证系统运行不间断。数据传输过程中,采用高效且安全的加密算法,确保数据在传输过程中不被篡改或泄露。
表格:双馈风力发电机组监控系统硬件与软件可靠性设计
系统组成 | 可靠性设计要求 | 备注 |
硬件部分 | 防护等级:IP65(防尘防水) | 适应高湿、灰尘环境 |
电气设备抗高温、抗震动、抗电磁干扰 | 保障设备长期稳定运行 | |
软件部分 | 冗余备份机制,自动切换至备份节点 | 防止单点故障 |
数据加密:采用高效安全加密算法 | 确保数据在传输过程中的安全性 | |
自诊断功能 | 实时监测各模块的状态,自动报警 | 防止设备故障未及时发现 |
远程维护与升级 | 提高故障响应效率并减少现场处理 | |
关键部件监控 | 发电机、电力电子变换器、变频器等关键部件的健康监测 | 提前发现潜在故障并预测剩余使用寿命 |
数据来源:某双馈风力发电机组长期运行数据与监控记录
通过实时监测各个模块的状态,系统能够及时识别出硬件或软件故障,并自动进行报警处理。这一功能可以有效避免因系统故障未及时发现而导致的设备损坏或停机。系统还应具备远程维护与升级的能力,当出现故障时,技术人员可以通过远程操作进行诊断与修复,减少现场维护人员的负担,提高故障响应的效率。
可靠性分析还应涵盖风力发电机组的关键部件,如发电机、电力电子变换器、变频器等。通过对这些关键部件的状态进行实时监测,系统可以提前识别出潜在的故障,并通过数据分析预测部件的剩余使用寿命,为后续的维护决策提供依据。基于可靠性分析的预测性维护策略能够有效延长机组的使用寿命,减少突发故障的发生。
为确保双馈风力发电机组运行状态监测系统的顺利实施,需要对系统的软硬件环境进行精心搭建。这一过程中,硬件设备的选择与安装、数据采集与传输的搭建、以及监控中心的软件平台开发等都需要充分协调,以确保系统在实际运行中能够达到预期的性能指标。
系统的硬件搭建从数据采集设备开始,风力发电机组运行状态监测需要通过多种传感器进行实时数据采集,包括电压、电流、转速、温度、振动等各项指标。每种传感器的选择都经过精心调研,确保其能够在风力发电机组的工作环境下正常工作。各传感器的数据通过数据采集单元进行数字化处理后,再通过通信模块传输到远程监控中心。
在数据传输方面,为保证数据的稳定性与实时性,系统选择高效的通信协议与网络架构。采用4G/5G无线网络技术进行数据传输,确保即使在偏远的风电场中也能够稳定传输大量的数据。考虑到远程监控系统可能面临的网络不稳定或信号中断问题,系统还设计本地缓存机制。在通信中断时,数据会先存储在本地缓存中,待通信恢复后再进行同步,避免因网络问题导致的数据丢失。
系统的软件平台搭建是系统实现的核心部分。软件平台主要由数据采集、数据处理、故障诊断和人机交互界面等模块组成。数据采集模块通过接口与硬件设备对接,实时获取传感器数据。数据处理模块则对采集到的数据进行实时分析,根据风力发电机组的运行模型,对异常数据进行诊断,并通过智能算法进行故障预测。系统还提供可视化的图形用户界面,用户可以通过该界面查看实时数据,设置监控参数,回放历史数据,以及接收故障报警信息。
在双馈风力发电机组运行状态监测系统的硬件实现过程中,数据采集的精度和实时性是影响系统性能的核心因素。系统的硬件架构必须能够高效、稳定地支持数据的采集、处理、存储以及传输功能。在此基础上,设计合理的硬件组件、选择合适的传感器、优化信号调理电路是系统顺利实施的关键。
数据采集卡(DAQ卡)是实现传感器信号数字化与计算机系统之间数据交换的重要硬件设备。在双馈风力发电机组监控系统中,采集卡的设计直接影响到数据处理的精度和实时性。由于风力发电机组的运行环境复杂且动态变化,要求数据采集卡具备较高的采样频率和多通道支持能力,能够处理来自多种传感器的数据并确保传输过程中的稳定性和准确性。
为满足这些需求,本系统采用一款具有24位分辨率、每通道采样频率为10 kHz的多通道数据采集卡。该采集卡支持多种输入信号类型,如模拟量、数字量、频率信号等,能够同时处理来自温度、电压、电流、振动、转速等多种传感器的信号。数据采集卡通过PCIe接口与计算机主机连接,确保大数据量下的高速数据传输。在数据传输过程中,采集卡内置的数字信号处理模块(DSP)能够实时进行数据预处理,以减少主机的负担,保证系统的实时性。具体而言,数据采集卡的采样精度要求较高,尤其是对于测量电压和电流信号,要求具有较低的采样误差。根据实验测试数据,在高频率下,采集卡的采样误差不超过0.1%。通过选择高精度的模拟数字转换器(ADC),系统可以确保对各类信号的准确采集,进而提高整体监测系统的精度。
传感器的选型和信号调理电路的设计对于整个系统的运行性能至关重要。传感器需具备高精度、宽量程以及良好的抗干扰性能,以适应风力发电机组在恶劣环境中的工作需求。信号调理电路的作用在于将来自传感器的模拟信号转化为适合数据采集卡处理的数字信号,避免信号在传输过程中受到噪声干扰而影响采集精度。
对于温度测量,系统选择PT100铂电阻温度传感器,这种传感器在高温和低温下都能保持稳定的性能,并且具有较高的线性度,能够确保对温度变化的精确响应。为确保信号传输过程中的稳定性,采用高精度的放大电路来对信号进行增益调理,减少温度传感器与数据采集卡之间的信号损失。对于电流、电压信号,系统则选用霍尔效应电流传感器和高压电压传感器。霍尔效应传感器具有非接触式测量的优势,能够有效隔离电流信号中的电磁干扰,保证电流测量的准确性。
信号调理电路的设计主要集中在抗干扰和信号放大两方面。采用低噪声、低失真的放大器来增强信号,并通过滤波电路有效地去除频率干扰,确保数据采集卡能够接收到清晰且精确的信号。为适应不同传感器的输出特性,信号调理电路设计中还考虑多路信号处理,保证不同传感器信号的兼容性和信号质量。
硬件部分的搭建完成后,系统的软件实现成为保证整体监控系统稳定、高效运行的核心。系统软件不仅需要能够实时接收和处理大量传感器数据,还要具备一定的智能算法进行故障诊断与数据分析,辅助运维人员做出及时、准确的决策。
监控软件是双馈风力发电机组运行状态监测系统的核心组成部分,涉及数据采集、处理、存储、显示、报警等多个功能模块。为提高软件的可操作性和用户体验,软件的功能模块设计需要符合直观、易用的原则,帮助用户快速解机组的运行状态,并及时采取相应措施。
数据采集模块是系统的基础功能模块,负责实时接收来自各个传感器的数据,并将其传输至计算机进行处理。为保证数据的实时性与准确性,数据采集模块需要采用高效的算法对信号进行滤波、放大等预处理,并在第一时间传输至数据处理模块。数据处理模块则对接收到的数据进行分类与分析,主要实现故障诊断、趋势预测以及性能评估等功能。通过与风力发电机组的运行模型进行比对,系统可以实时判断机组是否处于异常状态。诊断模块则结合机器学习算法,利用历史数据和实时数据对机组故障进行智能识别。系统通过建立健康模型和故障模型,进行故障预测与预警,从而为运维人员提供及时的维修指导。系统还可以生成详细的故障诊断报告和维修建议,进一步提高系统的可靠性与运行效率。
报警模块则是系统的一项重要功能,能够在机组出现故障时,实时向操作员发出报警信号。报警内容包括故障类型、发生位置以及初步诊断结果,帮助操作人员快速判断故障源,并做出合理的决策。报警系统还可以与现场设备进行联动,启动预设的紧急保护措施,防止故障进一步恶化。
人机界面(HMI)是系统与用户之间的交互界面,其设计直接影响到系统的操作便捷性与用户体验。在双馈风力发电机组的监控系统中,人机界面设计需要具备直观性、实时性和高效性,以便用户能够快速获取机组的各项运行数据,并在出现故障时及时响应。
系统的人机界面设计主要包括数据展示、图表呈现和报警信息三个方面。数据展示模块以图表的形式展示机组的实时运行数据,包括温度、电压、电流、转速、功率等指标,并通过色彩和数字变化的方式直观反映机组的状态。图表呈现则主要展示机组的运行趋势,包括功率输出、负荷变化、温度波动等。通过对历史数据的展示,操作人员可以快速分析机组的运行趋势,及时发现潜在问题。报警信息模块则以弹窗的形式,及时提醒操作人员机组运行中的异常,并提供相应的故障信息和维护建议。
为提高用户体验,系统界面采用简洁明的布局,并提供友好的操作提示。用户可以通过点击不同的菜单项快速切换界面,查看不同的数据和报告。系统还提供远程访问功能,允许用户在任何地点通过互联网连接到监控平台,实时查看机组运行状态并进行远程操作。
系统集成与调试阶段是双馈风力发电机组运行状态监测系统建设过程中至关重要的一环。此阶段不仅验证硬件与软件的协同工作,也确保各部分组件能够在实际环境中稳定运行。通过合理的集成方法与调试流程,系统的功能得以全面验证,确保其在实际应用中的有效性和可靠性。
在集成过程中,第一对硬件部分进行组装,确保各个硬件设备,包括数据采集卡、传感器、信号调理电路等,能够稳定运行。硬件集成完成后,进行系统初步的通信测试,确认数据采集模块与控制系统的无缝连接。系统通过软件层面的验证,确保传感器数据能够准确无误地传输至计算机系统,并经过数据处理模块进行有效分析。接下来,进行全功能测试,确保各个传感器能够在不同工作环境下稳定输出,并且系统能够对不同数据进行实时处理。
调试阶段主要集中在系统性能的优化以及潜在问题的排查。通过多次对风力发电机组进行负荷测试、功率输出测试等,系统的响应时间、采集精度和实时数据处理能力得到验证。在调试过程中,团队根据实际测试结果进行相应的调整,优化传感器信号的调理电路,确保测量精度达到预期标准。
系统集成与调试阶段的成功完成标志着双馈风力发电机组运行状态监测系统已具备投入实际应用的条件。通过持续的监测与数据反馈,进一步提升系统的稳定性和可扩展性,为后续系统的优化和升级打下坚实基础。
为验证双馈风力发电机组运行状态监测系统的性能,开展全面的系统测试。系统测试的核心目标是评估监控系统的准确性、实时性、稳定性及其对故障诊断与报警功能的响应能力。测试方法和流程的设计依照风力发电机组的实际运行需求,结合理论分析与实验数据,确保全面且科学的评价监控系统的整体性能。
测试方法采用分阶段验证的方式,第一对数据采集精度进行独立验证,然后进行系统联调测试,最终通过实际风力发电机组的负荷、输出功率、振动等参数进行系统的全面测试。在每一阶段的测试中,确保监控系统能够实时、准确地反馈运行状态,且不受外界因素的影响,维持稳定性。为提高测试的可靠性,所有测试数据均与标准仪器进行比对,确保系统测得的数据具有高度的准确性。系统的测试流程主要分为三个步骤:硬件功能测试、数据准确性验证、故障诊断与报警功能测试。在硬件功能测试阶段,主要测试传感器的稳定性及数据采集卡的传输能力;数据准确性验证主要通过与标准测量仪器的对比来评估系统的采集精度;故障诊断与报警功能测试则通过模拟不同的故障状态,检验系统的响应能力。
风力发电机组的运行状态监控测试主要集中在功率输出、电流、电压、温度、振动等关键参数的实时监测。通过在风力发电机组的不同部位安装传感器,收集到的数据被实时传输到数据采集卡,再由监控系统进行处理与展示。测试结果表明,系统能够在复杂的工作环境中稳定运行,且对各项参数的监控数据具备较高的准确性。
以风力发电机组的功率输出为例,实验过程中通过对比实际风速与系统测得的功率输出值,发现系统输出功率与理论计算值之间的误差始终保持在5%以内。对于电压与电流信号,测试结果显示,系统的电压波动范围控制在0.5%以内,电流测量误差则不超过0.3%。这些数据表明,监控系统能够准确反映风力发电机组在不同运行状态下的电气特性,能够为运维人员提供精确的运行数据支持。
在温度监控方面,传感器与实际测量值的偏差小于0.2℃,保证系统对机组内部温度变化的精确监测。振动监测数据显示,风力发电机组的机械振动波动较小,振动传感器所反馈的数值均在正常范围内,系统能够及时捕捉到风力机组的异常振动信息。
故障诊断与报警功能是风力发电机组监控系统的关键组成部分。为验证该功能的有效性和实时性,实验过程中模拟多种可能的故障情境,包括发电机过载、转子不平衡、温度过高、振动异常等情况。测试结果显示,系统能够在出现故障时迅速识别,并发出相应的报警信号。
具体而言,在模拟发电机过载的故障情境下,系统通过监测功率输出和电流信号的变化,实时检测到机组负载的异常变化,并成功发出“发电机过载”的警报。系统不仅能够及时诊断故障,还能够提供详细的故障描述,包括故障类型、发生位置及初步诊断结果,帮助运维人员迅速采取应急措施。
在转子不平衡故障模拟中,系统通过振动传感器的实时数据对比,识别出转子不平衡现象,并在故障发生的第一时间发出报警。通过进一步的测试,系统能够判断不同程度的故障,并给出相应的修复建议。温度过高与振动异常等故障也都能通过该系统实时反馈,极大提升故障诊断的效率和准确性。
在本章节中,对双馈风力发电机组运行状态监测系统进行的各项测试结果进行详细分析,目的是对系统的性能、稳定性、精度等关键指标进行验证。通过对不同监测目标的测试结果进行对比分析,深入探讨系统在实际运行中的表现与潜在问题。
对于数据采集的精度,测试结果表明,系统在多次风速波动的测试中,风力发电机组的功率输出值与理论计算值的误差维持在5%以内,远低于行业普遍的误差范围。具体地,在风速为7.2 m/s时,系统测得的功率值为1500.8 kW,而根据理论模型计算得出的功率值为1580.2 kW,两者的误差为4.97%。而在较低风速的测试中,系统的表现同样稳定。例如,在风速为3.4 m/s时,系统测得的功率输出为482.1 kW,相比理论计算值479.3 kW的误差仅为0.57%。这些结果表明,系统具有较高的采集精度,并能够在多变的风速条件下稳定工作。
在电压与电流的监控测试中,系统表现出良好的实时监控能力。在模拟风速波动情况下,电压的波动控制在±0.5%以内,电流波动则控制在±0.3%以内,这充分验证系统在动态环境下的稳定性与准确性。以电压为例,在风速由4.2 m/s变至6.8 m/s的过程中,电压的波动范围从229.4 V到230.1 V之间,仅有0.7 V的变动,表现出其优异的稳定性。
在温度监测中,传感器反应灵敏,测试中温度变化的偏差始终保持在±0.2℃之内,这为风力发电机组的温控管理提供有力保障。同时,在振动监测方面,系统成功检测到的异常振动状态与发电机组的实际机械故障吻合,振动传感器所反馈的振动数据与设备故障发生的时间完全一致,进一步表明系统对机械故障的诊断能力具备高效性。
故障诊断与报警功能的测试结果同样令人满意。系统通过对多个故障状态的模拟,能够在故障发生后1秒钟内准确识别并发出报警。例如,当系统模拟发电机过载状态时,监控系统立即识别到电流超过设定阈值,并发出“过载报警”。测试显示,系统能有效预测设备异常,及时向运维人员发送警报信息,为早期故障处理和维护提供有力支持。
在对双馈风力发电机组运行状态监测系统的全面测试与分析后,发现一些潜在的改进空间,特别是在系统响应速度、数据处理能力和智能诊断算法方面。尽管系统整体表现优异,但仍存在一些可优化的环节,今后的改进将进一步提高系统的综合性能,使其更加智能化和高效。
针对系统的响应速度,虽然目前系统在故障诊断与报警功能上表现出色,但在一些高频波动数据的处理上存在一定的延迟。在风速变化较快时,系统对于快速变化的功率输出数据的处理略显滞后。为解决这一问题,建议进一步优化数据采集与处理模块,增加更高性能的处理器与加速算法,同时改进传感器的信号采集频率,使得系统能够更快速地响应实时数据变化。
现有的系统在多传感器数据同时采集的情况下,部分传感器的数据处理存在一定的瓶颈,特别是在高并发情况下,数据传输和存储速度有所下降。通过引入更高效的数据压缩与存储技术,采用分布式计算平台进行数据处理,可以有效减少系统的处理延迟,并提高系统的实时性。
在智能诊断算法方面,当前的系统基于规则引擎进行故障诊断,但规则引擎的局限性使得系统的智能性受到一定的制约。为实现更智能化的故障诊断,可以考虑引入机器学习算法,尤其是深度学习算法,在故障诊断与预测方面提供更高的准确性与灵活性。通过对历史数据的学习,系统能够在遇到新型故障时,通过模式识别进行自动诊断,提高故障预测的准确性,并减少人为干预。
随着技术的发展,风力发电机组的智能化程度也在逐步提高,监控系统应与机组的其他控制系统进行深度融合。今后的优化方向之一是通过实现与风力发电机组内部控制系统的数据共享,使得监控系统能够更加精细地调控风力机组的运行状态,提供实时的性能优化建议。
第三,系统的可扩展性和兼容性也需要进一步增强。随着风力发电设备的不断发展,今后系统需要能够支持更多类型的风力发电机组,同时适应不同类型的传感器与测量仪器。为此,可以通过模块化设计,使得系统能够根据不同的需求进行灵活配置与升级,增强系统的适应性和长期稳定性。
双馈风力发电机组作为目前风力发电领域广泛应用的技术,其运行状态的监控至关重要。本文通过深入研究双馈风力发电机组运行状态监测系统的设计与实现,提出一种高效、精准的监控方案,并对该系统进行详细的性能测试与分析。研究结果表明,该监控系统能够实时、准确地采集机组各项关键运行参数,为设备的状态监测与故障诊断提供强有力的技术支持。
系统在风速、电压、电流、温度、振动等关键参数的监测中,展现出较高的精度与稳定性,能够有效反映风力发电机组的运行状态。尤其在故障诊断与报警功能方面,系统能够快速识别各种故障状态,并提供实时警报,帮助运维人员及时采取应急措施,从而避免潜在的设备损坏和发电损失。
通过对系统性能的全面测试与优化分析,本文也指出现有系统的不足之处,提出相应的优化方向。这些优化措施,特别是在智能算法的引入与数据处理能力的提升,将极大增强系统的智能化水平与实时性,进一步提高风力发电机组的运行效率和可靠性。
- 季晓龙,赵芡莹.基于振动监测系统的双馈发电机组轴电流故障分析[J].设备管理与维修,2023,(17):161-162
- 张文昊,周冬冬,谢越,等. 风力发电机组状态监测系统综述 [J]. 船舶工程, 2024, 46 (S2): 21-26+42.
- 滕辰龙,张立辉. 天然气发电机组远程监测系统的设计 [J]. 技术与市场, 2024, 31 (09): 79-81+85.
- 王要波,秦振华,吴晓成,等. 基于LabVIEW的发电机组动态性能监测系统设计 [J]. 电工技术, 2024, (11): 154-157.
- 张国容,袁建华,谈顺,等. 水轮发电机组故障监测系统互感器选型优化设计 [J]. 水电与新能源, 2024, 38 (05): 72-75.
- 张何境,陈献春,李健武,等. 大型燃煤发电机组锅炉煤粉细度在线监测系统研究 [J]. 价值工程, 2023, 42 (34): 151-153.
- 程国莉,韩一鸣. 水电厂发电机组绕组绝缘监测系统设计与探究 [J]. 水电站机电技术, 2023, 46 (10): 38-41.
- 季晓龙,赵芡莹. 基于振动监测系统的双馈发电机组轴电流故障分析 [J]. 设备管理与维修, 2023, (17): 161-162.
- 赵军帅. 基于无线传感器网络的风力发电机组状态监测系统设计 [J]. 中国新技术新产品, 2023, (11): 19-21.
- 郑庆帅. 汽轮发电机组扭振在线监测系统的研究[D]. 华北电力大学(北京), 2023.
- 周军长,李若松. 大型灯泡贯流式水轮发电机组全面监测系统的设计与研究 [J]. 自动化应用, 2023, 64 (05): 234-238+241.
- 史斌杰,唐堂,陈亚杰,等. 露天矿用重型卡车发电机组远程监测系统设计 [J]. 船电技术, 2023, 43 (02): 52-54+59.
- Wang Z ,Duan Y ,Liu C , et al. High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring. [J]. ACS applied materials & interfaces, 2025,
- Kamada C ,Kimura Y ,Yamada S , et al. Clinical significance of intraoperative bidirectional corticocortical evoked potential monitoring to evaluate language function. [J]. Journal of neurosurgery, 2025, 1-9.
- Lu S ,Li S ,Li Q , et al. Flexible cellulose-based hybrid nanogenerators for self-powered wearable bio-monitoring applications. [J]. Journal of colloid and interface science, 2025, 685 1087-1098.
- Jiang Y ,Mao Z . A novel carbon emission monitoring method for power generation enterprises based on hybrid transformer model [J]. Scientific Reports, 2025, 15 (1): 2598-2598.
- Sun Y ,Qian Z ,Wang Y , et al. A flexible humidity-resistant nanofiber-based triboelectric nanogenerator with high electrical output stability as self-powered sensors for motion monitoring [J]. Chemical Engineering Journal, 2025, 506 159845-159845.
- Wang X ,Li N ,Yang A , et al. Amino oxidized sodium alginate-based humidity-resistant triboelectric nanogenerator for human motion and respiration monitoring [J]. Chemical Engineering Journal, 2025, 506 159842-159842.
- Levin A E . Intraoperative Monitoring of Sensory Evoked Potentials in Neurosurgery: A Personalized Approach [J]. Journal of Personalized Medicine, 2025, 15 (1): 26-26.
- Tong Y ,Liu W ,Liu X , et al. Materials Design and Structural Health Monitoring of Horizontal Axis Offshore Wind Turbines: A State-of-the-Art Review [J]. Materials, 2025, 18 (2): 329-329.
- Aranizadeh A ,Shad H ,Vahidi B , et al. A novel small-scale wind-turbine blade failure detection according to monitored-data [J]. Results in Engineering, 2025, 25 103809-103809.
时光荏苒,春秋代序,转眼几年的学生生涯阶段即将结束。行笔至此,感慨良多。初次步入校园时的百感交集即将随风而逝,唯一不变是对成长道路上帮助过我的良师益友的感激。
衷心感谢老师,几年来的悉心教导与无私关怀,从论文的选题到写作过程,老师都耐心指导和讲解。老师渊博的学识、严谨的态度、创新的精神深深激励着我,传道、授业、解惑,恩师对我的教诲和熏陶将是我一生的财富。感谢老师们给予我撰写论文过程中所需的支持,在此特别感谢两位恩师的辛勤付出和温暖关怀。
感谢学院院长、老师等全体老师们,感谢母校,在这里度过的时光会成为人生中一段难忘的回忆。
感谢我的朋友们,你们在我研究生学习期间给予的支持和帮助,让我可以心无旁骛,完成这篇论文。感谢我的同班同学们几年年里对我的关心与帮助,人生当中遇到你们是我一辈子的幸福,我将不忘初心,砥砺前行,做一个对社会有用的人!