神经网络与机器学习 - 第0章 导言

0.1 什么是神经网络

        人脑计算与传统的数字计算机相比是完全不同的方式,人脑是一个高度复杂的、非线性的和并行的计算机器(信息处理系统)。人脑能够组织它的组成成分,即神经元,以比今天已有的最快的计算机还要快许多倍的速度进行特定的计算。
        脑在出生的时候就有很复杂的构造和具有通过我们通常称为的“经验”来建立它自己规则的能力。确实,经验是经过时间积累的,人脑在出生后头两年内发生了非常大的进化(即有硬接线),但是进化将超越这个阶段并继续进行。
        一个“进化中”的神经系统是与可塑的大脑同义的。可塑性允许进化中的神经系统适应其周边环境。可塑性似乎是人类大脑中作为信息处理单元的神经元功能的关键,同样在人工神经元组成的神经网络中亦是如此。
        我们给出将神经网络看作一种自适应机器的定义:神经网络是由简单处理单元构成的大规模并行分布式处理器,天然地具有存储经验知识和使之可用的特性。神经网络在两个方面与大脑相似:
(1)神经网络是通过学习过程从外界环境中获取知识的
(2)互连神经元的连接强度,即突触权值,用于存储获取的知识
        用于完成学习过程的程序称为学习算法,其功能是以有序的方式改变网络的突触权值以获得想要的设计目标。
        对突触权值的修改提供了神经网络设计的传统方法。受人脑的神经元会死亡以及新的突触连接会生长的事实所启发,神经网络修改它自身的拓扑结构也是可能的。

神经网络的优点

        神经网络的计算能力可通过以下两点得到体现:第一,神经网络的大规模并行分布式结构;第二,神经网络的学习能力以及由此而来的泛化能力。泛化(generalization) 是指神经网络对未在训练(学习)过程中遇到的数据可以得到合理的输出。但是在实践中,神经网络不能单独做出解答,它们需要被整合在一个协调一致的系统工程方法中。

        神经网络具有下列有用的性质和能力:

  1. 非线性(nonlinearity): 人工神经元可以是线性或者非线性的。
  2. 输入输出映射(input-output mapping): 称之为有教师学习或监督学习的关于学习的流行方法。对于当前问题来说,神经网络是通过建立输入输出映射来从样例中学习的。神经网络的输入输出映射和非参数统计推断之间存在相近的类比。
  3. 自适应性(adaptivity): 神经网络具有调整自身突触权值以适应外界环境变化的固有能力。 稳定性-可塑性困境。
  4. 证据响应(evidential response): 在模式分类问题中,神经网络可以设计成不仅提供选择哪一个特定模式的信息,还提供关于决策的置信度信息。后者可以用来拒判那些可能出现的过于模糊的模式,从而进一步改善网络的分类性能。
  5. 上下文信息(contextual information): 神经网络的特定结构和激发状态代表知识。网络中每一个神经元都受网络中所有其他神经元全局活动的潜在影响。因此,神经网络将很自然地能够处理上下文信息。
  6. 容错性(fault tolerance): 一个以硬件形式实现的神经网络具有天生的容错性,或者说具有鲁棒计算的能力,在这种意义上其性能在不利的运行条件下是逐渐下降的。为了确保网络事实上的容错性,有必要在设计训练网络的算法时采用正确的度量。
  7. VLSI实现(VLSI implementability): 神经网络的大规模并行性使它具有快速处理某些任务的潜在能力。这一特性使得神经网络很适合使用超大规模集成(very-large-scale-integrated,VLSI)技术来实现。VLSI的一个特殊优点是可以提供一个以高度分层的方式来捕捉真实复杂行为的方法。
  8. 分析和设计的一致性: 基本上,神经网络作为信息处理器具有通用性。
            神经元,不管形式如何,在所有的神经网络中都代表一种相同成分
            这种共性使得在不同应用中的神经网络共享相同的理论和学习算法成为可能
            模块化网络可以用模块的无缝集成来实现
  9. 神经生物类比: 神经网络的设计是由与人脑的类比引发的,人脑是一个容错的并行处理的实例,说明这种处理不仅在物理上是可实现的,而且还是快速、高效的。
            在脊椎动物的视网膜中,光图像转化成神经图像的过程由三个阶段组成
            1)受体神经元层的图像传导
            2)结果信号(产生于对光刺激的反应)由化学性突触传输给一层双极细胞
            3)同样,由化学性突触把结果信号传给神经节细胞的输出神经元

0.2 人类大脑

        人的神经系统可以看作三阶段系统。请添加图片描述
        引入神经元作为人脑结构成分的思想,从而使得人们理解人脑的努力变得简单多了。通常,神经元比硅逻辑门要慢5到6个数量级;硅逻辑门中的事件发生在纳秒级,而在神经中的事件发生在毫秒级。但大脑中含有数量惊人的神经元和突触,并且大脑拥有非常高效的结构,且脑的能量效率远远高于现在最好的计算机。
        突触(synapse)或称之为神经末梢(nerve ending),是调节神经元之间相互作用的基本结构和功能单位。非互逆的两端口设备。
        可塑性允许进化神经系统以适应周边环境。在成年人的大脑中,可塑性可以解释两个机能:新连接以及修改已有的连接。
        大多数神经元把它们的输出转化成一系列简短的电压脉冲编码。这些脉冲,一般称为动作电位或尖峰,产生于神经元细胞体或其附近并以恒定的电压和振幅穿越个体神经元。
        在人脑中,有小规模和大规模解剖组织之分,在底层和高层会发生不同的机能。突触表示最基本的层次,其活动依赖于分子和离子。其后的层次有神经微电路、树突树以及神经元。神经微电路指突触集成,组织成可以产生所需的功能操作的连接模式。它就像一个由晶体管集成的硅片,最小的尺寸用微米度量,最快的操作速度用毫秒度量。神经微电路被组织成属于神经元个体的树突树的树突子单元。局部电路处在其次的复杂性水平,由具有相似或不同性质的神经元组成,这些神经元集成完成脑局部区域的特征操作。接下来是区域间电路,有通路、柱子和局部解剖图组成,牵涉脑中不同部分的多个区域。 大脑的分层结构组织如下:
在这里插入图片描述
        局部解剖图(topographic map) 被组织成用来响应输入的感知信息。它们经常被组织成片束状,如同在上丘中一样。上丘中视觉、听觉和人体触觉区以层邻接的方式放置,使得空间中相应点的刺激处于各层的下面或上面。不同的感知输入(运动、触觉、视觉、听觉等)被有序地映射到大脑皮层的相应位置。在复杂性的最后一级,局部解剖图和其他的区域间电路成为中央神经系统传递特定行为的媒介。
        结构分层组织是大脑的独有特征。 我们在数字计算机中找不到这种结构,在人工神经网络中也无法近似地重构它们。但是,我们仍在向分级计算层状结构缓慢推进。用以构造神经网络的人工神经元和人脑中的神经元相比确实比较初级,我们目前能设计的网络和人脑中初级的局部电路和区域间电路相当。

0.3 神经元模型

        神经元是神经网络操作的基本信息处理单位。 神经元模型的三种基本元素:

  1. 突触或连接链集 每一个都由其权值或者强度作为特征
  2. 加法器 用于求输入信号被神经元的相应突触加权的和。这个操作构成一个线性组合器
  3. 激活函数 用来限制神经元输出振幅(压制函数

        外部偏置的作用是根据其为正或为负,相应地增加或降低激活函数的网络输入。数学术语表示神经元:
        uk = ∑ j = 1 m \sum_{j=1}^{m}{} j=1mwkjxj
        yk = φ \varphi φ(uk + bk)
        其中x1,x2,…,xm是输入信号,wk1,wk2,…,wkm是神经元k 的突触权值,uk 是输入信号的线性组合器的输出,bk 为偏置,激活函数为 φ \varphi φ(·),yk 是神经元输出信号。偏置bk的作用是对线性组合其的输出uk仿射变换(affine transformation) vk = uk + bk
        特别地,根据偏置bk取正或取负,神经元k的诱导局部域或者激活电位vk和线性组合器输出uk。注意到由于这个仿射变换的作用,vk与uk的图形不在经过原点。

        偏置bk是人工神经元k的外部参数,加上一个新的突触,其输入是x0 = +1,权值是wk0 = bk
        uk = ∑ j = 0 m \sum_{j=0}^{m}{} j=0mwkjxj
        yk = φ \varphi φ( vk)
        偏置起两种作用:(1)添加新的固定输入+1;(2)添加新的等于偏置bk的突触权值

激活函数的类型

        激活函数,记为 φ \varphi φ( v ),通过诱导局部域v定义神经元输出。

  1. 阈值函数(Heaviside函数)
            其中vk是神经元的诱导局部域,即vk = ∑ j = 1 m \sum_{j=1}^{m}{} j=1mwkjxj + bk 在神经计算中,这样的神经元在文献中称为McCulloch-Pittts模型,以纪念McCulloch and Pitts的开拓性工作。在模型中,如果神经元的诱导局部域非负,则输出为1,否则为0 。这描述了McCulloch-Pitts模型的皆有或者皆无特性(all-or-none property)
  2. sigmoid函数
            此函数的图形是“S”形的,在构造人工神经网络中是最常用的激活函数。它是严格的递增函数,在线性和非线性行为之间显现出较好的平衡。sigmoid函数的一个例子是logistic函数,定义如下:
             φ \varphi φ( v ) = 1 1 + e x p ( − a v ) \frac{1}{1 + exp( - av)} 1+exp(av)1
            其中,a 是sigmoid函数的倾斜参数。修改参数a就可以改变倾斜程度,在原点的斜度等于a/4。在极限情况下,倾斜参数趋于无穷,sigmoid就变成了简单的阈值函数。阈值函数仅取值 0 或 1,而sigmoid的值域是 0 到 1 的连续区间。还要之一到sigmoid函数是可微分的,而阈值函数不是。
            以上两个激活函数的值域是 0 到 +1 。有时也期望激活函数的值域是 -1 到 +1,这种情况下激活函数是诱导局部域的奇函数。双曲正切函数与sigmoid函数相对应,它允许sigmoid型的激活函数取负值,这有时候会产生比logistic函数更好的实际利益。

神经元的统计模型

        上面的神经元模型是确定的,它的输入输出行为对所有的输入精确定义。但是在一些神经网络的应用中,基于随机神经模型的分析更符合需要。使用一些解析处理方法,McCulloch-Pitts模型的激活函数用概率分布来实现。具体来说,一个神经元允许有两个可能的状态值 +1 或 -1 。一个神经元激发(即它的状态开关从“关”到“开”)是随机决定的。用 x 表示神经元的状态,P(v)表示激发的概率,其中 v 是诱导局部域。我们可以设定:
         x = { + 1 概率为 P ( v ) − 1 概率为 1 − P ( v ) x=\begin{cases} +1 & 概率为P(v) \\ - 1 & 概率为1 - P(v) \end{cases} x={+11概率为Pv概率为1Pv
        一个标准选择是sigmoid型的函数:P(v) = 1 1 + e x p ( − v / T ) \frac{1}{1 + exp( - v/ T)} 1+exp(v/)1
        其中T是伪温度,用来控制激发中的噪声水平即不确定性。但是,不管神经网络是生物的或人工的,T都不是神经网络的物理温度,认识到这一点很重要。进一步,正如所说明的一样,我们仅仅将T看作是一个控制表示突触噪声效果的热波动参数。注意当T趋于0时,上面两个式子所描述的随机神经元就变为无噪声(即确定性)形式,也就是McCulloch-Pitts模型。

0.4 被看作有向图的神经网络

        神经元的非线性限制了它们在神经网络中的应用范围。不过,信号流图在描述神经网络信号流时为我们提供了简洁的方法。
        信号流图是一个由在一些特定的称为节点的点之间相连的有向连接(分支) 组成的网络。一个典型的节点j有一个相应的节点信号xj。一个典型的有向连接从节点 j 开始,到 k 节点结束。它有相应的传递函数传递系数以确定系欸但 k 的信号 yk 依赖于节点 j 的信号 xj 的方式。图形中各部分的信号流动遵循三条基本规则:

  1. 信号仅仅沿着定义好的箭头方向在连接上流动
            突触连接 它的行为由线性输入输出关系决定
            激活连接 它的行为一般由非线性输入输出关系决定
  2. 节点信号等于经由连接进入的有关节点的所有信号的代数和
  3. 节点信号沿每个外向连接向外传递,此时传递的信号完全独立于外向连接的传递函数

        给出一个神经网络的下列数学定义:
神经网络是由具有互相连接的突触节点和激活连接构成的有向图,具有4个主要特征:

  1. 每个神经元可表示为一组线性的突触连接,一个外部应用偏置,以及可能的非线性激活连接。偏置由一个固定为+1的输入连接的突触连接表示
  2. 神经元的突触连接给它们相应的输入信号加权
  3. 输入信号的加权和构成神经元的诱导局部域
  4. 激活连接压制神经元的诱导局部域产生输出

        一个如此定义的有向图是完全的,这是指它不仅仅描述了神经元间的信号流,也描述了每个神经元内部的信号流。当我们注意力集中在神经元之间的信号流上时,可以使用简略形式,省略神经元内部的信号流的细节,这样的有向图是局部完全的,特征如下:

  1. 源节点向图提供输入信号
  2. 每个神经元由称为计算节点的单个节点表示
  3. 联结图中源节点和计算节点之间的通信连接没有权值,它们仅仅提供图中信号流的方向

        这样定义的一个局部完全的有向图就是所谓的神经网络结构图,描述神经网络的布局。

        总的来说,我们有三种神经网络的图形表示方法:

  • 方框图 提供网络的功能描述
  • 结构图 描述网络布局
  • 信号流图 提供网络中完全的信号流描述

0.5 反馈

        (目前讨论的系统被假定为线性的)当系统中一个元素的输入能够部分地影响作用于该元素的输入,从而造成一个或多个围绕该系统进行信号传输的封闭路径时,我们说动态系统中存在着反馈(feedback)。 在一类特殊的神经网络——递归网络的研究中扮演着重要角色。特别地,前向通道的输出通过反馈通道来部分地影响自己的输出。可以通过输入输出关系(前向通道和反馈通道的算子),算出系统的闭环算子,开环算子(通常没有交换性)。
        稳定性是闭环反馈系统研究中的突触特征。 由于用于构造神经网络的处理单元通常是非线性的,因此它所涉及的反馈应用的动态行为分析都很复杂。

0.6 网络结构

        神经网络中神经元的构造方式与用于训练网络的学习算法有着紧密的联系。因此,我们可以说,用于神经网络设计的学习算法(规则)是被构造的。一来说,我们可以区分三种基本不用的网络结构。

单层前馈网络

        在分层网络中,神经元以层的形式组织。在最简单的分层网络中,源节点构成输入层,直接投射到神经元输出层(计算节点)上,反之则不然。也就是说,这个网络是严格前馈的。单层指的是计算节点(神经元)输出层。 我们不把源节点的输入层计算在内,因为在这一层没有进行计算。

多层前馈网络

        前馈神经网络的第二种网络有一层或多层隐藏层,相应的计算节点称为隐藏神经元隐藏单元。隐藏神经元的功能是以某种有用的方式介入外部输入和网络输出之中。通过增加一个或多个隐藏层,网络可以根据其输入引出高阶统计特性。
        网络输入层的源节点提供激活模式的元素(输入向量),组成第二层(第一隐藏层)神经元(计算节点)的输入信号。第二层的输出信号作为第三层输入,这样一直传递下去。通常,每一层的输入都是上一层的输出,最后的输出层给出相对于源节点的激活模式的网络输出。
        完全连接网络这是指相邻层的任意一对节点都有连接。如果不是这样,我们称之为部分连接网络。

递归网络

        递归网络前馈网络的区别在于它至少有一个反馈环。递归网络可以由单层神经元组成,单层网络的每一个神经元的输出都反馈到所有其他神经元的输入中。自反馈环表示神经元的输出反馈到它自己的输入上。另一类递归网络。反馈连接的起点包括隐藏层神经元和输出神经元。
        由于反馈环涉及使用单位时间延迟元素(记为z-1)构成的特殊分支,假如神经网络包含非线性单元,将导致非线性的动态行为。

0.7 知识表示

        关于知识的一般性定义:知识就是人或者机器存储起来以备使用的信息或模型,用来对外部世界作出解释、预测和适当的反应。
        知识表示的主要特征有两个方面:(1)什么信息是明确表述的;(2)物理上信息是如何被编码和使用的。按知识表示的本性,它是目标导向的。在“智能”机器的现实应用中,可以说好的方案取决于好的知识表示。
        神经网络的一个主要任务是学习它所一寸的外部世界(环境)模型,并且保持该模型和真实世界足够兼容,使之能够实现感兴趣应用的特定目标。有关世界的知识由两类信息组成。

  1. 已知世界的状态
            由“什么是”事实和“什么是已知道的”事实所表示;这种形式的知识称之为先验信息
  2. 对世界的观察(测量)
            由神经网络中被设计用于探测环境的传感器获得。一般来说,这些观察是带有固有噪声的,这是由于传感器的噪声和系统的不完善而产生的误差。不管怎样,这样得到的观察会提供一个信息池,从中提取样例来训练神经网络

        样例可以是有标号的,也可以是无标号的。 以手写数字识别问题为例,使用如下的办法设计神经网络:

  • 为神经网络选择一个合适的结构,输入层的源节点数和输入图像的像素数一样,而输出层包含10个神经元(每个数字对应一个神经元)。利用合适的算法,以样本的一个子集来训练网络。这个网络设计阶段称为学习
  • 用陌生样本来测试已训练网络的识别性能。网络运行的这个第二个阶段叫做测试,对测试模式而言的成功性叫做泛化,这是借用了心理学的术语

        神经网络的设计直接基于实际数据,“让数据自己说话”。因此神经网络不但提供了其内嵌于环境的隐含模型,也实现了感兴趣的信息处理功能。
        用于训练神经网络的例子可以由正例反例组成。在神经网络的独特结构中,周围环境的知识表示是由网络的自由参数(即突触权值和偏置)的取值所定义的。这种知识表示的形式构成神经网络的设计本身,因此,也是网络性能的关键。

知识表示的规则

        人工网络中知识的表示是非常复杂的,通用的4条规则如下所述:

  1. 相似类别中的相似输入通常应产生网络中相似的表示,因此,可以归入同一类中
            测量输入相似性有很多放啊。常用的测量方法是利用欧几里得距离的概念。如果两个向量是相似的,就将它们归为同一类。另一个相似性测量方法是基于点积内积,它也是借用了矩阵代数的概念。内积除以范数积就是两个向量的夹角的余弦。
            欧几里得距离越小,向量越相似,内积越大。
            无论数据向量xi和xj是确定的还是随机的,规则1讨论了这两个向量之间是如何彼此相关的。相关性不仅仅在人类大脑中起着关键的作用,同样对多种信号处理系统来说也是如此。
  2. 网络对可分离为不同种类的输入向量给出差别较大的表示
  3. 如果某个特征很重要,那么网络表示这个向量将涉及大量神经元
            探测概率 目标存在时系统判断目标出现的概率
            虚警概率 目标不存在时系统判断目标出现的概率
            实际上,规则3意味着在真实目标存在的时候应该有大量神经元参与判决该目标出现。同理,仅当混杂状态实际存在的时候才应该有大量神经元参与判决该混杂状态的出现。在这两种情况下,大量的神经元保证了判决的高度准确性和对错误神经元的容错性。
  4. 如果存在先验信息和不变性,应该将其附加在网络设计中,这样就不必学习这些信息而简化网络设计
            真正加持这一规则会使网络具有特定结构,原因如下:
            1.已知生物视觉和听觉网络是非常特别的
            2.相对于完全连接网络,特定网络用于调节的自由参数是较少的。因此,特定网络所需要的训练数据更少,学习更快而且常常泛化性能更强
            3.能够加快通过特定网络的信息传输速率(即网络的吞吐量)
            4.和全连接网络相比特定网络的建设成本比较低,因为其规模较小
            然而,要说明的是,将先验知识结合进神经网络的设计中会限制神经网络仅能应用于根据某些感兴趣的知识来解决特定问题。

怎样在神经网络设计中加入先验信息

        目前没有有效的规则来实现在神经网络设计中建立先验信息,以此建立一种特定的网络结构。目前更多的是通过某些特别的过程来实现,并已知可以产生一些有用的结果。特别是我们使用下面两种技术的结合:

  1. 通过使用称为接收域的局部连接,限制网络结构
  2. 通过使用权值共享,限制突触权值的选择

        这两种方法,特别是后一种,有很好的附带效益,它能使网络自由参数的数量显著下降。一个神经元的接收域被定义为输入域区域,其输入刺激能够影响该神经元产生的输出信号。
        为满足权值共享限制,我们对网络隐藏层中的每个神经元都使用同一组突触权值。{wi}6i=1 构成所有四个隐藏神经元共享的同一权值集。前馈网络使用局部连接和权值共享的方式,我们称这样的前馈网络为卷积将网络。

如何在网络设计中建立不变性

        系统必须可以应对一定范围内观察信号的变换。相应地,一个模式识别问题的主要任务就是设计对这些变换不变的分类器。也就是说,分类器输出的类别估计不受分类器输入观察信号变换的影响。至少可以用三种即使使得分类器类型的神经网络对变化不变:

  1. 结构不变性
            适当地组织神经网络的设计,在神经网络中加进不变性。具体来说,在建立网络的神经元突触连接时要求同一输入变换后必须得到同样的输出。缺点:神经网络即使在处理中等大小的图像时,网络中的连接数目也会变得非常大。
  2. 训练不变性
            神经网络有天生的模式分类能力。利用这种能力可以直接得到下面的变换不变性:用一些来自同一目标的不同样本来训练网络,这些样本代表不同变换(即目标的不同方面)。假设样本足够大且训练后的网格已经学会分辨目标的不同方面,我们就可以期望训练后的网络能对一出现目标的不同变换做出正确的泛化。两点不足:第一,如果一个神经网络训练后对已知变换的目标有不变性,不一定能保证它对其他类型目标的变换也有不变性。第二,网络的计算要求可能会很难达到,特别在高维特征空间尤其如此。
  3. 不变特征空间
            依赖于这样的前提条件,即能提取表示输入数据本质信息内容特性的特征,并且这些特征对输入的变换保持不变。如果使用这样的特征,那么分类神经网就可以从刻画具有复杂决策边界的目标变换范围的负担中解脱出来。确实,同一目标的不同事例的差异仅仅在于噪声和偶发事件等不可避免因素的影响。特征空间不变性提供了三个明显的好处:第一,适用于网络的特征数可以降低到理想的水平。第二,网络设计的要求放宽了。第三,所有目标的已知变换的不变性都得到保证。

一些最终评论

        神经网络中的知识表示和网络结构有着直接关系。遗憾的是,还没有成功的理论可以根据环境来优化神经网络结构,或者评价修改网络结构对网络内部知识表示的影响。实际上,对这些问题的满意结果经常要对感兴趣的具体应用进行彻底的实验研究才能得到,而神经网络的设计者也成为结构学习环中的关键部分。

0.8 学习过程

        广义上讲,我们可以通过神经网络的功能对其学习过程进行如下分类:有教师学习和无教师学习。按照相同的标准,后者又可以分为无监督学习和强化学习两个子类。这些应用于神经网络的不同形式是和人类学习的形式相似的。

有教师学习(监督学习)

        从概念上讲,我们可以认为教师具有对周围环境的知识,这些知识被表达为一系列的输入-输出样本。然而神经网络对环境一无所知。教师可以根据自身掌握的一些知识为神经网络提供对训练向量的期望响应。神经网络的参数可以在训练向量和误差信号的综合影响下进行调整。误差信号可以定义为神经网络的实际响应与预期响应之差。这种调整可以逐步而又反复地进行,其最终的目的就是要让神经网络模拟教师。利用这种手段,教师所掌握的关于环境的知识就可以通过训练过程最大限度地传授给神经网络。

无教师学习

强化学习

        输入输出映射的学习是通过与环境的不断交互完成的,目的是使一个标量性能指标达到最小。这种学习系统建立在一个评价的基础上,评价将从周围环境中接收到的原始强化信号转换成一种称为启迪强化信号的高质量强化信号,两者都是标量输入。设计该系统的目的是为了适应延迟强化情况下的学习,即意味着系统观察从环境接收的一个时序刺激,它们最终产生启发式的强化信号
        强化学习的目标是将cost-to-go函数最小化,该函数定义为采取一系列步骤动作的代价累计期望值,而不是简单的直接代价。可以证明:在时间序列上早期采取的动作事实上是整个系统最好的决定。学习系统的功能就是用来发现这些动作并将它们反馈给环境。
        基于如下两个原因延迟强化学习系统很难完成:

  • 在学习过程中的每个步骤,没有教师提供一个期望的响应
  • 生成原始强化信号时的延迟意味着学习机必须解决时间信任赋值问题。也就是说,对将导致最终结果的时间序列步中的每一个动作,学习机必须各自独立地对信任和责任赋值,而原始强化可能仅评价最终结果

        它提供系统与周围环境交互的基础,因此可以仅仅在这种与环境交互获得经验结果的基础上,发展学习能力来完成指定任务。

无监督学习

        在无监督自组织学习系统中,没有外部的教师或者评价来监督学习的过程。而且,必须提供任务独立度量来度量网络的表达质量,让网络学习该度量而且根据这个度量来最优化网络自由参数。对一个特定的任务独立度量来说,一旦神经网络能够和输入数据的统计规律相一致,那么网络将会发展其形成输入数据编码特征的内部表示的能力,从而自动创造新的类别。

0.9 学习任务

        对特定学习规则的选择与神经网络需要完成的学习任务紧密相关,而学习任务的多样性正是神经网络通用性的证明。

模式联想

        联想记忆是与大脑相似的依靠联想学习的分布式记忆。

模式识别

        模式识别被定义为一个过程,由这个过程将接收到的模式或信号确定为一些指定类别中的一个类。神经网络的模式识别本质上是基于统计特性的,各个模式可以表示成多维决策空间的一些点。决策空间被划分为不同的区域,每个区域对应于一个模式类。决策边界由训练过程决定。我们可以根据各个模式类内部以及它们之间的固有可变性用统计方式来确定边界。
        一般而言,采用神经网络的模式识别机分为如下两种形式:

  • 识别机分为两部分,用来作特征提取的无监督网络和作分类的监督网络。这种方法遵循传统的统计特性模式识别方法
  • 识别机设计成一个采用监督学习算法的前馈网络。在这第二个方法中,特征提取由网络隐藏层中的计算单元执行

函数逼近

        设计一个神经网络来逼近未知函数,使由网络实际实现的描述输入-输出映射的函数在欧几里得距离的意义下与原函数足够接近(存在代标号样例集合)。在另一个角度来看,或许监督可以看成是一个逼近问题
        神经网络逼近一个未知输入-输出映射的能力可以从两个重要途径加以利用:

  1. 系统辨识
  2. 逆模型

控制

        对设备进行控制操作。设备是指一个过程或者是可以在被控条件下维持运转的系统的一个关键部分。

波束形成

        波束形成是用来区分目标信号和背景噪声之间的空间性质的。用于实现波束形成的设备称为波束形成期器

0.10 结束语

         神经网络的一个突出的重要性质是“学习”,而学习可以分为以下几个类别。
1)监督学习 通过最小化感兴趣的代价函数来实现特定的输入-输出映射,需要提供目标或者期望的相应
2)无监督学习 其执行依赖于提供网络在自组织方式下学习所需要的对表示质量的“任务独立度量”
3)强化学习 学习系统通过持续地与其环境的交互来最小化一个标量性能指标,从而实现输入-输出映射

        半监督学习的学习训练数据采用有标号和无标号的样例。强化学习处于监督学习和无监督学习之间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值