decision trees
theory
To build a decision tree,you need to make a first decision on the dataset to dictate which feature is used to split the data.To determine this, you try every feature and measure which split will give you the best result. After that, you’ll split the dataset into subsets. The subsets will then traverse down the branches of the first decision node. If the data on the branches is the same class, then you’ve properly classified it and don’t need to continue splitting it. If the data isn’t the same, then you need to repeat the splittingprocess on this subset. The dicision on how to split this subset is done the same way as the original dataset, and you repeat this process until you’ve classified all the data.
process
1.Collect: Any method.
2.Prepare: This tree-building algorithm works only on nominal values, so any continuous values will need to be quantized.
3.Analyze: Any method. You should visually inspect the tree after it is built.
4.Train: Construct a tree data structure.
5.Test: Calculate the error rate with the learned tree.
6.Use: This can be used in any supervised learning task. Often, trees are used to better understand the data