decision trees

decision trees

theory

To build a decision tree,you need to make a first decision on the dataset to dictate which feature is used to split the data.To determine this, you try every feature and measure which split will give you the best result. After that, you’ll split the dataset into subsets. The subsets will then traverse down the branches of the first decision node. If the data on the branches is the same class, then you’ve properly classified it and don’t need to continue splitting it. If the data isn’t the same, then you need to repeat the splittingprocess on this subset. The dicision on how to split this subset is done the same way as the original dataset, and you repeat this process until you’ve classified all the data.

process

1.Collect: Any method.
2.Prepare: This tree-building algorithm works only on nominal values, so any continuous values will need to be quantized.
3.Analyze: Any method. You should visually inspect the tree after it is built.
4.Train: Construct a tree data structure.
5.Test: Calculate the error rate with the learned tree.
6.Use: This can be used in any supervised learning task. Often, trees are used to better understand the data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值