自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 神经网络与深度学习(课程记录)

MNIST数据集是由0〜9手写数字图片和数字标签所组成的,由60000个训练样本和10000个测试样 本组成,每个样本都是一张28 * 28像素的灰度手写数字图片。ResNet具有34层的权重层,有36亿 FLOPs,只是VGG-19(19.6亿FLOPs)的18%。测试批次包含来自每个类别的恰好1000个随机选择的图像。MNIST 数据集主要由一些手 写数字的图片和相应的标签组成,图片一共有 10 类,分别对应从 0~9。②如果特征图的大小减半,那么过滤器的数量就增加一倍,以保证每一层的时间复杂度相同。

2023-04-18 18:31:52 54 1

原创 神经网络与深度学习(课程记录)

以之前放的图像为例,这里选取的预训练的神经网络含有3个卷积层, 其中第二层输出图像的内容特征,而第一层和第三层的输出被作为图像的样式特征。物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,并且物体还可以是多个类别。样式迁移常用的损失函数由3部分组成:内容损失使合成图像与内容图 像在内容特征上接近,样式损失令合成图像与样式图像在样式特征上 接近,而总变差损失则有助于减少合成图像中的噪点。可以看到图中的合成图像保留了内容图像的风景和物体,并同时迁移了样式图像的色彩。

2023-04-18 18:12:35 89 1

原创 神经网络与深度学习(课程记录)

最初,PyTorch由Hugh Perkins开发,作为基于Torch框架的LusJIT的Python包装器。的数学操作,但也可以表示数据输入的起点/输出的终点,或者是读取/写入持久变量的终点。参数自适应变化:具有较大偏导的参数相应有一个较大的学习率,而具有小偏导的参数则对应一个较小的学习率。填充(Padding),也就是在矩阵的边界上填充一些值,以增加矩阵的大小,通常用0或者复制边界像素来进行填充。学习率是单调递减的,训练后期学习率过小会导致训练困难,甚至提前结束需要设置一个全局的初始学习率。

2023-03-28 00:05:24 57

原创 神经网络与深度学习(课程记录)

网络结构:见图,u、y是网络的输入、输出向量,神经元用节点表示,网络由输入层、隐层和输出层节点组成,隐层可一层,也可多层(图中是单隐层),前层至后层节点通过权联接。②反向传播是将误差(样本输出与网络输出之差)按原联接通路反向计算,由梯度下降法调整各层节点的权值和阈值,使误差减小。①正向传播是输入信号从输入层经隐层,传向输出层,若输出层得到了期望的输出,则学习算法结束;多层前馈网络的反向传播 (BP)学习算法,简称BP算法,是有导师的学习,它是梯度下降法在多层前馈网中的应用。其中输入为第0层,输出为L层。

2023-03-17 17:21:05 104

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除