引入
热狗数据集包含2800包含热狗和其他食物的图像,下载地址如下:
原始:https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/hotdog.zip
微云:链接:https://share.weiyun.com/lTrk8xq4 密码:fks7u4
1 图像载入
from torchvision.datasets import ImageFolder
def load_image(save_home="D:/Data/Image/hotdog/"):
"""
图像载入
"""
# 训练集和测试集
return ImageFolder(save_home + "train"), ImageFolder(save_home + "test")
def test1():
"""测试之图像载入"""
image_tr, image_te = load_image()
if __name__ == '__main__':
test1()
2 图像展示
def test2():
"""测试之图像展示"""
def show_images(imgs, num_rows, num_cols, scale=1.4):
import matplotlib.pyplot as plt
_, axes = plt.subplots(num_rows, num_cols, figsize=(num_cols * scale, num_rows * scale))
for i in range(num_rows):
for j in range(num_cols):
axes[i][j].imshow(imgs[i * num_cols + j])
axes[i][j].axes.get_xaxis().set_visible(False)
axes[i][j].axes.get_yaxis().set_visible(False)
plt.show()
image_tr, image_te = load_image()
hotdogs = [image_tr[i][0] for i in range(8)]
not_hotdogs = [image_tr[-i - 1][0] for i in range(8)]
show_images(hotdogs + not_hotdogs, 2, 8)
if __name__ == '__main__':
test2()
输出如下:
致谢
感谢李沐、Aston Zhang等老师的这本《动手学深度学习》一书,为鄙人学习深度学习提供了很大的帮助。本文一系列关于深度学习的博客均无侵权之意,只为记录自己的深度学习历程。
项目Github地址:https://github.com/ShusenTang/Dive-into-DL-PyTorch