多示例学习 (multi-instance learning, MIL) 学习路线 (归类、重点文章列举、持续更新)

0 要点

说明:本文在于能够让大家能够更加快速地了解MIL这个领域,因此将从以下几个方面重点介绍MIL (这里不详细介绍每一篇文章,只做概述)。

会议合集:https://github.com/Lionelsy/Conference-Accepted-Paper-List
代码合集:https://github.com/lingxitong/MIL_BASELINE
Github版本:https://github.com/InkiYinji/MIL-Review

  • 注1:欢迎大家进一步交流,可以加入我建立的QQ群:649325831 (2024年1月15日建立);
  • 注2如果给出的文章包含代码,则可以点击其名称缩写获取;
  • 注3:承2,如果包含博客讲解,可以点击其全称获取;
  • 注4:承3,如果包含论文原文,可以点击会议缩写名获取;
  • 注5:一些缩写:
    - WSI:全幻灯片分类 (医学领域,目前最热门的MIL应用);
    - VAD:视频异常检测;
    - ECG:心电图;
  • 注6:对于每一个小节,其侧重点有所不同:
    • 章节2 (理论MIL概述):关注算法的实现细节;
    • 章节3 (MIL交叉领域):MIL与多标签、偏标签、对抗攻击、分布外检测的一些结合;
    • 章节4 (MIL应用概述):着重数据集的说明及其相关处理;
  • 注7:本人精力有限,希望能有更多的小伙伴和我一起完善这个博客~
  • 注8:后续将逐步将本博客的内容迁移至我的Github

1 多示例背景介绍

概述:多示例学习 (MIL) 是一种典型的弱监督学习,其输入的单个样本被称为 (bag),包中包含多个实例 (instance)。在训练阶段

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值