0 要点
说明:本文在于能够让大家能够更加快速地了解MIL这个领域,因此将从以下几个方面重点介绍MIL (这里不详细介绍每一篇文章,只做概述)。
会议合集:https://github.com/Lionelsy/Conference-Accepted-Paper-List
代码合集:https://github.com/lingxitong/MIL_BASELINE
Github版本:https://github.com/InkiYinji/MIL-Review
- 注1:欢迎大家进一步交流,可以加入我建立的QQ群:649325831 (2024年1月15日建立);
- 注2:如果给出的文章包含代码,则可以点击其名称缩写获取;
- 注3:承2,如果包含博客讲解,可以点击其全称获取;
- 注4:承3,如果包含论文原文,可以点击会议缩写名获取;
- 注5:一些缩写:
- WSI:全幻灯片分类 (医学领域,目前最热门的MIL应用);
- VAD:视频异常检测;
- ECG:心电图; - 注6:对于每一个小节,其侧重点有所不同:
- 章节2 (理论MIL概述):关注算法的实现细节;
- 章节3 (MIL交叉领域):MIL与多标签、偏标签、对抗攻击、分布外检测的一些结合;
- 章节4 (MIL应用概述):着重数据集的说明及其相关处理;
- 注7:本人精力有限,希望能有更多的小伙伴和我一起完善这个博客~
- 注8:后续将逐步将本博客的内容迁移至我的Github
1 多示例背景介绍
概述:多示例学习 (MIL) 是一种典型的弱监督学习,其输入的单个样本被称为包 (bag),包中包含多个实例 (instance)。在训练阶段