Graham扫描法
时间复杂度:O(n㏒n)
先找到凸包上的一个点,然后从那个点开始按逆时针方向逐个找凸包上的点
#include<bits/stdc++.h>
#define re return
#define D double
#define inc(i,l,r) for(register int i=l;i<=r;++i)
const int maxn=10005;
/*char buf[1<<21],*p1,*p2;
inline int getc(){ re p1==p2 and (p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
template<typename T>inline void rd(T&x)
{
char c;bool f=0;
while((c=getc())<'0'||c>'9')if(c=='-')f=1;
x=c^48;
while((c=getc())>='0'&&c<='9')x=x*10+(c^48);
if(f)x=-x;
}*/
using namespace std;
int n,st[maxn],top;
struct node
{
D x,y;
bool operator <(node a)const
{
re y<a.y;
if(y==a.y)re x<a.x;
}
}p[maxn];
inline D getdis(int a,int b){re sqrt((p[a].x-p[b].x)*(p[a].x-p[b].x)+(p[a].y-p[b].y)*(p[a].y-p[b].y));}
inline bool judge(int a,int b,int c)
{
re (p[a].x-p[b].x)*(p[b].y-p[c].y)<(p[a].y-p[b].y)*(p[b].x-p[c].x);
}
int main()
{
scanf("%d",&n);
inc(i,1,n)scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p+1,p+n+1);
//最下面的最左点
D ans=0;
//上凸壳
st[1]=1;st[2]=2;top=2;
inc(i,3,n)
{
while(top>1 and judge(i,st[top],st[top-1]))--top;
st[++top]=i;
}
inc(i,2,top)ans+=getdis(st[i-1],st[i]);
memset(st,0,sizeof(st));
st[1]=1;st[2]=2;top=2;
inc(i,3,n)
{
while(top>1 and (!judge(i,st[top],st[top-1])))--top;
/!!!不一样
st[++top]=i;
}
inc(i,2,top)ans+=getdis(st[i-1],st[i]);
printf("%.2lf",ans);
re 0;
}