凸包


Graham扫描法

时间复杂度:O(n㏒n)

先找到凸包上的一个点,然后从那个点开始按逆时针方向逐个找凸包上的点

#include<bits/stdc++.h>
#define re return
#define D double 
#define inc(i,l,r) for(register int i=l;i<=r;++i)
const int maxn=10005;

/*char buf[1<<21],*p1,*p2;
inline int getc(){ re p1==p2 and (p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}

template<typename T>inline void rd(T&x)
{
    char c;bool f=0;
    while((c=getc())<'0'||c>'9')if(c=='-')f=1;
    x=c^48;
    while((c=getc())>='0'&&c<='9')x=x*10+(c^48);
    if(f)x=-x;
}*/

using namespace std;
int n,st[maxn],top;
struct node
{
    D x,y;
    bool operator <(node a)const
    {
        re y<a.y;
        if(y==a.y)re x<a.x;
    }
}p[maxn];

inline D getdis(int a,int b){re sqrt((p[a].x-p[b].x)*(p[a].x-p[b].x)+(p[a].y-p[b].y)*(p[a].y-p[b].y));}
inline bool judge(int a,int b,int c)
{
    re (p[a].x-p[b].x)*(p[b].y-p[c].y)<(p[a].y-p[b].y)*(p[b].x-p[c].x);
}

int main()
{
    scanf("%d",&n);
    inc(i,1,n)scanf("%lf%lf",&p[i].x,&p[i].y);
    sort(p+1,p+n+1);
    //最下面的最左点
    
    D ans=0;
    //上凸壳
    st[1]=1;st[2]=2;top=2;
    inc(i,3,n)
    {
        while(top>1 and judge(i,st[top],st[top-1]))--top;
        st[++top]=i;
    }
    inc(i,2,top)ans+=getdis(st[i-1],st[i]);
    
    memset(st,0,sizeof(st));
    
    st[1]=1;st[2]=2;top=2;
    inc(i,3,n)
    {
        while(top>1 and (!judge(i,st[top],st[top-1])))--top;
        /!!!不一样
        st[++top]=i;
    }
    inc(i,2,top)ans+=getdis(st[i-1],st[i]);
    
    printf("%.2lf",ans);
    re  0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值