专题 二项式定理保证你看不懂

帕斯卡公式和帕斯卡三角形

帕斯卡公式 对于 0 ⩽ r ⩽ n 0\leqslant r\leqslant n 0rn,有 ( n r ) = ( n n − r ) {n\choose r} ={n\choose n-r} (rn)=(nrn)
证明 S S S n n n元素集合。我们指定 S S S中的集合并把他记作 x x x。设 S / { x } S/ \{ x\} S/{x}是从S中出去这个 x x x后得到的集合。把 S S S k k k子集的集合 X X X划分成两个部分 A A A B B B。在 A A A中放入不含 x x x的所以 k k k子集。在 B B B中放入包含 x x x的所有 k k k子集。 X X X的大小是 ( n k ) n\choose k (kn);因此,根据加法原理,有 ( n k ) = ∣ A ∣ + ∣ B ∣ {n\choose k}=|A|+|B| (kn)=A+BA中的k子集正好是集合 S / { x } S/\{x\} S/{x} n − 1 n-1 n1个元素的 k k k子集;因此,A的大小是 ∣ A ∣ = ( n − 1 k ) |A|={n-1\choose k} A=(kn1) S S S中的 k k k子集可以通过把元素 x x x加到 S / { x } S/\{x\} S/{x} ( k − 1 ) (k-1) (k1)子集中得到。因此,B的大小应该是 ∣ B ∣ = ( n − 1 k − 1 ) |B|={n-1\choose k-1} B=(k1n1)结合以上公式,我们将得到 ( n r ) = ( n n − r ) {n\choose r} ={n\choose n-r} (rn)=(nrn)

帕斯卡三角形 利用帕斯卡公式和初始信息 ( n 0 ) = 1 及 ( n n ) = 1 {n\choose 0}=1及{n\choose n}=1 (0n)=1(nn)=1,我们可以将二项时系数用帕斯卡三角形展示出来。在这个三角形中,除了在分界线上出现的 1 1 1之外,其余各项都是对上一行的两项求和得到的:直接上方的项加上其直接左邻项。如下图:

n\k012345678
01
111
2121
31331
414641
515101051
61615201561
7172135352171
818285670562881

二项式定理

二项式定理最初的几种形式是几个为人所熟知的代数恒等式。
二项式定理 n n n是正整数。对所以 x x x y y y,有 ( x + y ) n = n n + ( n 1 ) x n − 1 y + ( n 2 ) x n − 2 y 2 + . . . + ( n n − 1 ) x 1 y n − 1 + y n (x+y)^n=n^n+{n\choose 1}x^{n-1}y+{n\choose 2}x^{n-2}y^2+...+{n\choose n-1}x^1y^{n-1}+y^n (x+y)n=nn+(1n)xn1y+(2n)xn2y2+...+(n1n)x1yn1+yn ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k (x+y)^n=\sum_{k=0}^n{n \choose k}x^{n-k}yk (x+y)n=k=0n(kn)xnkyk
证明 我们将 ( x + y ) n (x+y)^n (x+y)n写成 n 个 ( x + y ) n个(x+y) n(x+y)因子的乘积形式 ( x + y ) ( x + y ) . . . ( x + y ) (x+y)(x+y)...(x+y) (x+y)(x+y)...(x+y)利用乘法分配律将这个乘积完全展开,然后再合并同类项。因为将在 ( x + y ) n (x+y)^n (x+y)n乘开时,对于每一个因子 ( x + y ) (x+y) (x+y),我们要么选择 x x x,要么选择 y y y,所以结果有 2 n 2^n 2n项,并且每一项都可以写成 x n − k y k x^{n-k}y^k xnkyk的形式,其中 k = 0 , 1 , . . . , n k=0,1,...,n k=0,1,...,n。在n个因子中,通过从k个因子中选择y并且在剩下的n-k个因子中选择x而得到 x n − k y k x^{n-k}y^k xnkyk。这样,在张开的乘积中项 x n − k y k x^{n-k}y^k xnkyk出现的次数等于n个因子的集合的k子集数 ( n k ) {n\choose k} (kn)。因此 ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k (x+y)^n=\sum_{k=0}^n{n \choose k}x^{n-k}yk (x+y)n=k=0n(kn)xnkyk

  • x = y = 1 x=y=1 x=y=1,则有
    2 n = ( n 0 ) + ( n 1 ) + . . . + ( n n ) 2^n={n\choose 0}+{n\choose 1}+...+{n\choose n} 2n=(0n)+(1n)+...+(nn)
  • x = 1 x=1 x=1 y = − 1 y=-1 y=1,则有
    0 = ( n 0 ) − ( n 1 ) + . . . + ( − 1 ) n ( n n ) 0={n\choose 0}-{n\choose 1}+...+(-1)^n{n\choose n} 0=(0n)(1n)+...+(1)n(nn)
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值