文章目录
1、整数的整除
定义1 设 a , b a,b a,b为整数, b ≠ 0 b ≠ 0 b̸=0,若存在整数 q q q,使得 a = b q a = bq a=bq, 那么 b b b整除 a a a,记作 b ∣ a b|a b∣a
1.1 整除的基本性质
性质1.1 若 a ∣ b a|b a∣b, b ∣ a b|a b∣a, 则 a = b a=b a=b 或 a = − b a = -b a=−b
证明
{ a ∣ b ⟺ b = a q b ∣ a ⟺ a = b p = a p q ⇒ p q = 1 , 即 p = 1 , q = 1 或 p = − 1 , q = − 1 ⇒ a = b 或 a = − b \begin{cases} a|b ⟺ b=aq \\ b|a ⟺ a=bp=apq\\ \end{cases} \Rightarrow pq=1,即p=1,q=1或p=-1,q=-1 \Rightarrow a=b 或 a = -b {
a∣b⟺b=aqb∣a⟺a=bp=apq⇒pq=1,即p=1,q=1或p=−1,q=−1⇒a=b或a=−b
性质1.2 若 a ∣ b a|b a∣b, b ∣ c b|c b∣c, 则 a ∣ c a|c a∣c
证明
{ a ∣ b    ⟺    b = a q b ∣ c    ⟺    c = b p = a p q ⇒ a ∣ c \begin{cases} a|b \iff b=aq \\ b|c \iff c=bp=apq \end{cases} \Rightarrow a|c {
a∣b⟺b=aqb∣c⟺c=bp=apq⇒a∣c
性质1.3 若 a ∣ b a|b a∣b, a ∣ c a|c a∣c, 则对任意整数 x x x, y y y,恒有 a ∣ b x + c y a|bx+cy a∣bx+cy
证明
{ a ∣ b    ⟺    b = a q a ∣ c    ⟺    c = a p ⇒ b x + c y = a q x + a p y = a ( q x + p y )    ⟹    a ∣ b x + c y \begin{cases} a|b \iff b=aq\\ a|c \iff c=ap\\ \end{cases} \Rightarrow bx+cy=aqx+apy=a(qx+py) \implies a|bx+cy {
a∣b⟺b=aqa∣c⟺c=ap⇒bx+cy=aqx+apy=a(qx+py)⟹a∣bx+cy
1.2 带余除法(欧几里得除法)
带余除法(欧几里得除法): 给定 a a a, b b b,存在唯一 a = b q + r a = bq + r a=bq+r, 0 ≤ r < ∣ b ∣ 0 ≤ r < |b| 0≤r<∣b∣
证明
2、素数
定义2 在大于1的自然数中,除了1和它本身以外不再有其他因数的数称为素数。
2.1 素数的相关性质
性质2.1 一个大于1的整数总能分解成一些素数的乘积
证明
性质2.2 素数有无穷多个
证明
我们用反证法,假设素数个数有限。那么我们设有限的 k k k个素数为 m 1 , m 2 , m 3 . . m k m_1,m_2,m_3..m_k m1,m2,m3..mk,并设 N = m 1 ∗ m 2 ∗ m 3 ∗ . . . ∗ m k N=m_1*m_2*m_3*...*m_k N=m1∗m2∗m3∗...∗mk,那么 N + 1 N+1 N+1必定为素数。这与假设相矛盾,故假设不成立,即素数有无穷多个。
性质2.3 一个数除 1 1 1以外的最小正因数一定是素数(反证,假设 p p p不是,那么 q ∣ p q|p q∣p…)
证明
2.2 素数的判断
算法原理 若 1 1 1~ n \sqrt n n 之间的素数都不能整除 a a a,则 a a a是素数。
代码如下:
#include <bits/stdc++.h>
using namespace std;
bool is_prime(int x)
{
if(x==1) return 0;
for(int i=2;i*i<=x;++i)
if(x%i==0) return 0;
return 1;
}
int main()
{
for(;;)
{
int x; scanf("%d",&x);
if(is_prime(x)) printf("Yes\n");
else printf("No\n");
}
return 0;
}
2.3 素数的筛法
埃拉托斯特尼筛法(埃氏筛法)
算法原理
素数的倍数一定不是素数。我们可以用一个长度为 N + 1 N+1 N+1的数组保存信息( t r u e true true表示素数, f a l s e false false表示非素数),先假设所有的数都是素数(初始化为 t r u e true true),从第一个素数 2 2 2开始,把 2 2 2的倍数都标记为非素数(置为 f a l s e false false),一直到大于 N N N;然后进行下一趟,找到 2 2 2后面的下一个素数 3 3 3,进行同样的处理,直到最后,数组中依然为 t r u e true true的数即为素数。
P.S:特别的,11既不是素数,也不是合数,所以 1 1 1要置为 f a l s e false false
例如,我们要求