专题 初等数论初步从入门到放弃

这篇博客详细介绍了初等数论的基础概念,包括整数的整除性质、素数的定义及筛法、最大公因数和最小公倍数的计算,以及快速幂等重要算法。通过实例和代码演示了如何判断素数、应用辗转相除法和欧几里得除法,并讲解了中国剩余定理和BSGS算法在解决同余方程中的应用。
摘要由CSDN通过智能技术生成

1、整数的整除

定义1 a , b a,b a,b为整数, b ≠ 0 b ≠ 0 b̸=0,若存在整数 q q q,使得 a = b q a = bq a=bq, 那么 b b b整除 a a a,记作 b ∣ a b|a ba

1.1 整除的基本性质

性质1.1 a ∣ b a|b ab, b ∣ a b|a ba, 则 a = b a=b a=b a = − b a = -b a=b
证明
{ a ∣ b ⟺ b = a q b ∣ a ⟺ a = b p = a p q ⇒ p q = 1 , 即 p = 1 , q = 1 或 p = − 1 , q = − 1 ⇒ a = b 或 a = − b \begin{cases} a|b ⟺ b=aq \\ b|a ⟺ a=bp=apq\\ \end{cases} \Rightarrow pq=1,即p=1,q=1或p=-1,q=-1 \Rightarrow a=b 或 a = -b { abb=aqbaa=bp=apqpq=1,p=1,q=1p=1,q=1a=ba=b

性质1.2 a ∣ b a|b ab, b ∣ c b|c bc, 则 a ∣ c a|c ac
证明
{ a ∣ b    ⟺    b = a q b ∣ c    ⟺    c = b p = a p q ⇒ a ∣ c \begin{cases} a|b \iff b=aq \\ b|c \iff c=bp=apq \end{cases} \Rightarrow a|c { abb=aqbcc=bp=apqac
性质1.3 a ∣ b a|b ab, a ∣ c a|c ac, 则对任意整数 x x x, y y y,恒有 a ∣ b x + c y a|bx+cy abx+cy
证明
{ a ∣ b    ⟺    b = a q a ∣ c    ⟺    c = a p ⇒ b x + c y = a q x + a p y = a ( q x + p y )    ⟹    a ∣ b x + c y \begin{cases} a|b \iff b=aq\\ a|c \iff c=ap\\ \end{cases} \Rightarrow bx+cy=aqx+apy=a(qx+py) \implies a|bx+cy { abb=aqacc=apbx+cy=aqx+apy=a(qx+py)abx+cy

1.2 带余除法(欧几里得除法)

带余除法(欧几里得除法): 给定 a a a, b b b,存在唯一 a = b q + r a = bq + r a=bq+r, 0 ≤ r < ∣ b ∣ 0 ≤ r < |b| 0rb
证明

2、素数

定义2 在大于1的自然数中,除了1和它本身以外不再有其他因数的数称为素数。

2.1 素数的相关性质

性质2.1 一个大于1的整数总能分解成一些素数的乘积
证明

性质2.2 素数有无穷多个
证明
我们用反证法,假设素数个数有限。那么我们设有限的 k k k个素数为 m 1 , m 2 , m 3 . . m k m_1,m_2,m_3..m_k m1,m2,m3..mk,并设 N = m 1 ∗ m 2 ∗ m 3 ∗ . . . ∗ m k N=m_1*m_2*m_3*...*m_k N=m1m2m3...mk,那么 N + 1 N+1 N+1必定为素数。这与假设相矛盾,故假设不成立,即素数有无穷多个。

性质2.3 一个数除 1 1 1以外的最小正因数一定是素数(反证,假设 p p p不是,那么 q ∣ p q|p qp…)
证明

2.2 素数的判断

算法原理 1 1 1~ n \sqrt n n 之间的素数都不能整除 a a a,则 a a a是素数。
代码如下

#include <bits/stdc++.h>
using namespace std;

bool is_prime(int x)
{
   
	if(x==1) return 0;
	for(int i=2;i*i<=x;++i)
		if(x%i==0) return 0;
	return 1;
}

int main()
{
   
	for(;;)
	{
   
		int x; scanf("%d",&x);
		if(is_prime(x)) printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}

2.3 素数的筛法

埃拉托斯特尼筛法(埃氏筛法)

算法原理

素数的倍数一定不是素数。我们可以用一个长度为 N + 1 N+1 N+1的数组保存信息( t r u e true true表示素数, f a l s e false false表示非素数),先假设所有的数都是素数(初始化为 t r u e true true),从第一个素数 2 2 2开始,把 2 2 2的倍数都标记为非素数(置为 f a l s e false false),一直到大于 N N N;然后进行下一趟,找到 2 2 2后面的下一个素数 3 3 3,进行同样的处理,直到最后,数组中依然为 t r u e true true的数即为素数。

P.S:特别的,11既不是素数,也不是合数,所以 1 1 1要置为 f a l s e false false
例如,我们要求

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值