专题 鸽巢原理从入门的放弃

1 鸽巢原理:简单形式

定理1.1 如果把 n + 1 n+1 n+1个物体放进 n n n个盒子,那么至少有一个盒子包含 2 2 2个或更多的物体。
证明 用反证法进行证明。如果这 n n n个盒子中的每一个都至多含有 1 1 1个物体,那么物体的总数最多是 n n n。这与我们有 n + 1 n+1 n+1个物体矛盾,所有某个盒子至少有 2 2 2个物体。

定理1.2 如果把 n n n个物体放进 n n n个盒子并且没有一个盒子是空的,那么每一个盒子恰好有一个物体。

定理1.3 如果把 n n n个物体放进 n n n个盒子并且没有一个盒子被放入多于一个物体,那么每一个盒子恰好有一个物体。

以上 3 3 3个原理可以更抽象的表述为:
X X X Y Y Y是有限集合,并令 f : X → Y f:X\rightarrow Y f:XY是一个从 X X X Y Y Y的函数。

  • 如果 X X X的元素多余 Y Y Y的元素,那么 f f f就不是一一对应的。
  • 如果 X X X Y Y Y含有相同个数的元素,并且 f f f是满射,那么 f f f就是一一对应。
  • 如果 X X X Y Y Y含有相同个数的元素,并且 f f f是一一对应,那么 f f f就是满射。

例1.1 给定 m m m个整数 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am,存在满足 0 ⩽ k &lt; l ⩽ m 0\leqslant k&lt;l\leqslant m 0k<lm的整数 k k k l l l,使得 a k + 1 + a k + 2 + . . . + a l a_{k+1}+a_{k+2}+...+a_l ak+1+ak+2+...+al。即在序列 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am中存在连续的 a a a,这些 a a a的和能被 m m m整除。

证明 为证明这一结论,考虑 m m m个和 a 1 , a 1 + a 2 , a 1 + a 2 + a 3 , . . . , a 1 + a 2 + a 3 + . . . + a m a_1,a_1+a_2,a_1+a_2+a_3,...,a_1+a_2+a_3+...+a_m a1,a1+a2,a1+a2+a3,...,a1+a2+a3+...+am如果这些和当中的任意一个可以被 m m m整除,那么结论成立。因此,我们可以假设这些和中的每一个除以 m m m都有一个非零余数,余数等于 1 , 2 , . . . , m − 1 1,2,...,m-1 1,2,...,m1中的一个数。因为有 m m m个和,而只有 m − 1 m-1 m1个元素,所有必然有两个和除以 m m m有相同的余数。因此,存在整数 k k k l l l,看k<l,使得 a 1 + a 2 + . . . + a k a_1+a_2+...+a_k a1+a2+...+ak a 1 + a 2 + . . . + a l a_1+a_2+...+a_l a1+a2+...+al除以 m m m有相同的余数 r r r a 1 + a 2 + . . . + a k = b m + r , a 1 + a 2 + . . . + a k = c m + r a_1+a_2+...+a_k=bm+r,a_1+a_2+...+a_k=cm+r a1+a2+...+ak=bm+r,a1+a2+...+ak=cm+r两式相减,我们发现 a k + 1 + a k + 2 + . . . + a l = ( c − b ) m a_{k+1}+a_{k+2}+...+a_l=(c-b)m ak+1+ak+2+...+al=(cb)m,从而 a k + 1 + a k + 2 + . . . + a l a_{k+1}+a_{k+2}+...+a_l ak+1+ak+2+...+al能被 m m m整除。

例1.2(中国剩余定理) n n n m m m是互素的正整数,并设 a a a b b b是整数,其中 0 ⩽ a ⩽ m − 1 0\leqslant a\leqslant m-1 0am1并且 0 ⩽ b ⩽ n − 1 0\leqslant b\leqslant n-1 0bn1。于是,存在正整数 x x x,使得 x x x除以 m m m的余数为 a a a x x x除以 n n n的余数为 b b b;即 x x x可以写成 x = p m + a x=pm+a x=pm+a的同时又可以写成 x = q n + b x=qn+b x=qn+b的形式,这里, p p p q q q是两个整数。
证明 为证明这个结论,我们考虑 n n n个整数 a , m + a , 2 m + a , . . . , ( n − 1 ) m + a a,m+a,2m+a,...,(n-1)m+a a,m+a,2m+a,...,(n1)m+a这些整数中每一个除以 m m m都余 a a a。设其中两个除以 n n n有相同的余数 r r r。令这两个数为 i m + a im+a im+a j m = a jm=a jm=a,其中,存在两整数 q i q_i qi q j q_j qj,使得 i m + a = q i n + r im+a=q_in+r im+a=qin+r j m + b = q j n + r jm+b=q_jn+r jm+b=qjn+r第二个方程减去第一个方程,得 ( j − i ) m = ( q i − q j ) n (j-i)m=(q_i-q_j)n (ji)m=(qiqj)n上面方程告诉我们, n n n ( j − i ) m (j-i)m (ji)m的因子。因为 n n n m m m互素,因此 n n n只能是 j − i j-i ji的因子。这与我们的假设相矛盾: a , m + a , 2 m + a , . . . , ( n − 1 ) m + a a,m+a,2m+a,...,(n-1)m+a a,m+a,2m+a,...,(n1)m+a中两个除以 n n n有相同的余数。因此,这 n n n个数中的每一个除以 n n n都有不同的余数。根据鸽巢原理, n n n个数 0 , 1 , 。 。 。 , n − 1 0,1,。。。,n-1 0,1n1中的每一个都有作为余数出现;特别是 b b b也如此。设 p p p为整数,满足 0 ⩽ p ⩽ n − 1 0\leqslant p\leqslant n-1 0pn1,使得数 x = p m + a x=pm+a x=pm+a除以 n n n余数为 b b b。则对于某个整数 q q q,有 x = q n + b x=qn+b x=qn+b因此, x = p m + a x=pm+a x=pm+a x = q m + b x=qm+b x=qm+b,从而 x x x具有要求的性质。

2 鸽巢原理:加强版

定理2.1 q 1 , q 2 , . . . , q n q_1,q_2,...,q_n q1,q2,...,qn是正整数。如果将 q 1 + q 2 + . . . + q n − n + 1 q_1+q_2+...+q_n-n+1 q1+q2+...+qnn+1个物体放入 n n n个盒子内,那么或者第一个盒子至少含有 q 1 q_1 q1个物体,或者第二个盒子至少含有 q 2 q_2 q2个物体,…,或者第 n n n个盒子至少含有 q n q_n qn个物体。

证明 假设我们把 q 1 + q 2 + . . . + q n − n + 1 q_1+q_2+...+q_n-n+1 q1+q2+...+qnn+1个物体放入n个盒子中。如果对于每一个 i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n,第 i i i个盒子含有少于 q i q_i qi个物体,那么所有盒子中的物体总数不超过 ( q 1 − 1 ) + ( q 2 − 1 ) + . . . + ( q n − 1 ) = q 1 + q 2 + . . . + q n − n (q_1-1)+(q_2-1)+...+(q_n-1)=q_1+q_2+...+q_n-n (q11)+(q21)+...+(qn1)=q1+q2+...+qnn由于上面这个数比分配物体的总数少 1 1 1,矛盾,因此,对于某一个 i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n i i i个盒子至少含有 q i q_i qi个物体。

注意 鸽巢原理的简单形式可以通过取 q 1 = q 2 = . . . = q n = 2 q_1=q_2=...=q_n=2 q1=q2=...=qn=2而由加强版达到。此时有 q 1 + q 2 + . . . + q n − n + 1 = 2 n − n + 1 = n + 1 q_1+q_2+...+q_n-n+1=2n-n+1=n+1 q1+q2+...+qnn+1=2nn+1=n+1

推论2.1 n n n r r r都是正整数。如果把 n ( r − 1 ) + 1 n(r-1)+1 n(r1)+1个物体分配到 n n n个盒子中,那么至少有一个盒子中含有 r r r个或更多的物体。

可以用另一种方法阐述这一原理,即平均原理:
如果 n n n个非负整数 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn的平均数大于 r − 1 r-1 r1,即 m 1 + m 2 + . . . + m n n &gt; r − 1 \frac{m_1+m_2+...+m_n}{n}&gt;r-1 nm1+m2+...+mn>r1那么至少有一个整数大于或等于 r r r

想明白推论2.2与这个平均原理的关系,只需要取 n ( r − 1 ) + 1 n(r-1)+1 n(r1)+1个物体并把它们放入 n n n个盒子即可。对于 i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n,设 m i m_i mi是第 i i i个盒子中的物体个数。于是这 m m m个数 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn的平均数为 m 1 + m 2 + . . . + m n n = n ( r − 1 ) + 1 n = r − 1 + 1 n \frac{m_1+m_2+...+m_n}{n}=\frac{n(r-1)+1}{n}=r-1+\frac{1}{n} nm1+m2+...+mn=nn(r1)+1=r1+n1因为这个平均数大于 r − 1 r-1 r1,所有整数 m i m_i mi中有一个至少是 r r r。换句话说,这些盒子中有一个至少含有 r r r个物体。

还有一个不同的平均原理是:
如果 n n n个非负整数 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn的平均数小于 r + 1 r+1 r+1,即 m 1 + m 2 + . . . + m n n &gt; r − 1 \frac{m_1+m_2+...+m_n}{n}&gt;r-1 nm1+m2+...+mn>r1那么至少有一个整数小于或等于 r r r

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值