神经网络与深度学习笔记1

本文介绍了人工智能的基础,包括机器学习和其局限性,进而引出人工神经网络和深度学习的概念。深度学习在多层神经网络中展现强大的特征学习能力,常应用于计算机视觉、自然语言处理等领域。此外,文章还讨论了线性分类,如线性回归、线性分类器、感知机模型以及多层前馈网络的误差反传(BP)算法在解决复杂分类问题中的应用。
摘要由CSDN通过智能技术生成

1、概述

人工智能(AI):是用机器去实现所有目前必须借助人类智慧才能实现的任务。其 具体研究、开发用于模拟、延伸和扩展人的智能的理 论、方法、技术及应用系统。

机器学习是人工智能的一个重要分支,是实现智能化的关键。其经典定义为:利用经验来改善计算机系统的性能。

(经验:在计算机系统中,即为数据(集); 主要目标:预测未知、理解系统。)

而机器学习存在局限,大量非结构化数据(语义不清楚、稀疏)使机器学习收效甚微结构化数据。因而引出了人工神经网络。

人工神经网络 (ANN): 是从微观结构与功能上模拟人脑神经系统而建立的一类 模型,是模拟人的智能的一条途径 信息处理由人工神经元间的相互作用来实现,由联接权 来传递,具有学习能力、自适应性、联接强度的可变性。
深度学习: 多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有 更本质的刻画,从而有利于可视化或分类。深度神经网络在训练上的难度,可以通过“逐层初始化”来有效克服,逐层初始化可通过无监督学习实现。

神经网络与深度学习应用趋势:计算机视觉,机器学习,图像识别,语音识别,机器人,自然语言处理。

2、线性分类与感知机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值