1、概述
人工智能(AI):是用机器去实现所有目前必须借助人类智慧才能实现的任务。其 具体研究、开发用于模拟、延伸和扩展人的智能的理 论、方法、技术及应用系统。
机器学习是人工智能的一个重要分支,是实现智能化的关键。其经典定义为:利用经验来改善计算机系统的性能。
(经验:在计算机系统中,即为数据(集); 主要目标:预测未知、理解系统。)
而机器学习存在局限,大量非结构化数据(语义不清楚、稀疏)使机器学习收效甚微结构化数据。因而引出了人工神经网络。
人工神经网络 (ANN):
是从微观结构与功能上模拟人脑神经系统而建立的一类
模型,是模拟人的智能的一条途径
信息处理由人工神经元间的相互作用来实现,由联接权
来传递,具有学习能力、自适应性、联接强度的可变性。
深度学习:
多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有
更本质的刻画,从而有利于可视化或分类。深度神经网络在训练上的难度,可以通过“逐层初始化”来有效克服,逐层初始化可通过无监督学习实现。
神经网络与深度学习应用趋势:计算机视觉,机器学习,图像识别,语音识别,机器人,自然语言处理。
2、线性分类与感知机