【2023·CANN训练营第一季】昇腾Al计算平台CANN的逻辑架构

本文旨在浅析昇腾Al计算平台CANN的逻辑架构

CANN平台

昇腾Al计算为我们提供了一个平台,叫做CANN (Compute Architecture for Neural Network)

“专门为神经网络设计的计算框架”

CANN平台由计算加速库、芯片算子库和高度自动化的算子开发工具等组成

CANN逻辑架构

CANN平台的逻辑架构

芯片使能层

实现解决方案对外能力开放,以及基于计算图的业务流的控制和运行。

芯片使能层的逻辑架构

  • AscendCL昇腾计算语言库

    开放编程框架,提供Device/Context/Stream/內存等的管理、**模型及算子的加载与执行、媒体数据处理、Graph管理**等API库,供用户开发深度神经网络应用。

  • 图优化和编译

    统一的IR接口对接不同前端,支持TensorFlow/Caffe/MindSpore表达的计算图的解析/优化/编译,提供对后端计算引最优化部署能力。

    • Graph Engine图编译和运行的控制中心
    • Fusion Engine管理算子融合规则
    • AICPU EngineAICPU算子信息管理
    • HCCL: HCCL算子信息管理
  • 算子编译和算子库

    • TBE编译生成算子及算子开发工具
    • 算子库神经网络加速库
  • 数字视觉预处理

    实现视频编解码(VENC/DEC)、JPEG编解(JPEGD/E)、 PNG解码(PNGD)、VPC(预处理)

  • 执行引擎

    • Runtime:为神经网络的任务分配提供资源管理通道
    • Task Scheduler:计算图Task序列的管理和调度、执行

计算资源层

主要实现系统对数据的处理和对数据的运算执行

计算资源层的逻辑架构

  • 计算设备

    • Al Core:执行NN类算子
    • AI CPU: 执行CPU算子
    • DVPP: 视频/图像编解码、预处理
  • 通信链路

    • PCle:芯片间或芯片与CPU间高速互联
    • HCCS:实现芯片间缓存一致性功能
    • RoCE:实现芯片内存 RDMA功能

应用层

包括基于Ascend平台开发的各种应用,以及Ascend提供给用户进行算法开发、调优的应用类工具。

应用层的逻辑架构

  • 推理应用

    基于AscendCL捉供的APl构建推理应用

  • Al框架

    包括TensorflowCaffeMindspore以及第三方框架

  • 模型小型化工具

    实现对模型进行量化,加速模型

  • AutoML工具

    基于MindSpore自动学习工具,根据昇腾芯片特点进行搜索生成亲和性网络充分发挥昇腾性能

  • 加速库

    基于AscendCL构建的加速库 (当前支持Blas加速库

  • MindStudio

    提供给开发者的集成开发环境和调试工具,可以通过MindStudio进行离线模型转换、离线推理算法应用开发调试、算法调试、自定义算子开发和调试、日志查看、性能调优、系统故障查看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值