华为昇腾异构计算架构CANN及AI芯片简介

异构计算架构CANN

异构计算架构CANN(Compute Architecture for Neural Networks)是华为针对AI场景推出的异构计算架构,向上支持多种AI框架,包括MindSpore、PyTorch、TensorFlow等,向下服务AI处理器与编程,发挥承上启下的关键作用,是提升昇腾AI处理器计算效率的关键平台。同时针对多样化应用场景,提供多层次编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。

总结:CANN用来屏蔽底层硬件差异,使得用户能够无缝使用Pytorch等主流深度学习框架进行开发。

在这里插入图片描述

图1 CANN逻辑架构

昇腾AI芯片基本架构

昇腾AI芯片基本架构

图2 昇腾AI芯片基本架构

基于Ascend C开发的算子运行在AI Core上,AI Core负责执行标量向量张量相关的计算密集型算子,包括三种基础计算单元:Cube(矩阵)计算单元、Vector(向量)计算单元和Scalar(标量)计算单元,同时还包含存储单元(包括硬件存储和用于数据搬运的搬运单元)和控制单元。

总结:AI Core是芯片的核心,用来运行算子。

AI Core耦合硬件架构

AI core硬件架构根据Cube计算单元和Vector计算单元是否同核部署分为耦合架构和分离架构两种,其中Atlas 训练与推理系列产品均采用耦合架构。

AI core的缓存理解:
1、GM:可以理解为显存
2、L1 Buffer:与GM交互,加载或者存储数据
3、Unified Buffer:统一缓冲区,向量和标量计算的输入和输出。
4、Buffer L0A&L0B&L0C:专门为Cube单元设置的缓存,L0A和L0B为Cube指令的输入,L0C是Cube指令的输出。

在这里插入图片描述

图3 AI Core耦合硬件架构

参考链接1:https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/devguide/opdevg/ascendcopdevg/atlas_ascendc_10_0008.html
参考链接2:https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0003.html
参考链接3:https://blog.csdn.net/m0_37605642/article/details/132780001

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力搬砖的小王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值