2021年7月12日,我拿到了香港中文大学的offer,开个帖子记录一下面试题目,方便学弟学妹参考。
一、导师面试
2021年5月,我通过发邮件联系了导师,附上了我的个人简历,导师找了两个助理教授老师给我面试。
这个面试是中文的,刚开始是1分钟的中文自我介绍,然后根据简历让我介绍了其中一个科研经历,其中一位老师提问了一些科研经历的细节,另外一个老师提问了三道题目:
1.空间中有ABCDE五个点,其中ABCD四点组成一个四面体,如何判断E是否在这个四面体中?
参考答案1:ABCD中每次取三个点(例如ABC)组成一个平面方程,剩余的一个点(D)代入平面方程得到一个值,E点也代入平面方程得到一个值,两个值的正负性一致(表示在该平面的同一侧)。对于四个面,如果都满足该条件,则E点在四面体内。如果一个面不满足,则E点不在四面体内。
参考答案2:以A为原点,AB,AC,AD三个向量构成空间的三个基,如果可以用这三个向量表示AE,且每个向量的系数属于(0,1),则E在四面体内,否则不在四面体内。
2.如何用数值方法计算根号x?
这个有很多种方法做,我当时说的是牛顿迭代法。
3.有12个外观一致的小球,其中有1个的重量异常(不知道更轻或更重),有一个没有刻度的天平,如何通过三次称量找出异常小球?
这个比较繁琐,感兴趣的可以在知乎上搜一下答案。提示的话,就是第一次分成三份,每份4个小球。
二、HKPFS学生面试
港中文学校的面试是英文的,所以也建议练习一下口语、听力,以及专有词汇。方便起见下面我还是用中文写了。
我当时是参加的是带有HKPFS(香港政府奖学金)的学生的面试,时间是2021年7月8日。
刚开始是2分钟的英文自我介绍,然后提问了两个问题:
1.对一个8位数的二进制数进行翻转操作,一次翻转操作包含两个位数的0-1变换(从0变成1,或者从1变成0),可以进行任意次操作,一共可以产生多少个不同的数字?
参考答案:128。2的8次方除以2,因为1的个数的变化次数只能是偶数。
2.一共有n级台阶,一次可以迈1,2 或3级,请问一共有多少种方法上台阶?
参考答案:使用递归算法。f(1)=1;f(2)=2;f(3)=4;f(n)=f(n-1)+f(n-2)+f(n-3),n>3;
三种情况:最后是一步上1个台阶的话,之前上了n-1个台阶,走法为f(n-1)种;最后是一步上2个台阶的话,之前上了n-2个台阶,走法为f(n-2)种;最后是一步上3个台阶的话,之前上了n-3个台阶,走法为f(n-3)种;