PV-RCNN
蓝鲸鱼BlueWhale
香港中文大学计算机视觉方向博士在读
展开
-
PV-RCNN代码测试——TP,FP,TN,FN的计算(二)
PV-RCNN:paper,code配套理论篇:PV-RCNN代码解读——TP,FP,TN,FN的计算在compute_statistics_jit函数中添加如下输出代码:def compute_statistics_jit(overlaps, gt_datas, dt_datas, ignored_gt, ignored_det, dc_bboxes, metric, min_overlap, thresh=0, compute_fp=False, compute_aos=False):原创 2020-08-26 21:20:50 · 763 阅读 · 1 评论 -
PV-RCNN代码测试——gt_annos & dt_annos
PV-RCNN:paper,code打印gt_annos和dt_annos代码# pcdet/datasets/kitti/kitti_object_eval_python/eval.py============================ details of evaluation of image6 start==================== print('gt_annos:',gt_annos) print('dt_annos:',dt_annos) prin原创 2020-08-26 16:56:45 · 872 阅读 · 4 评论 -
PV-RCNN代码测试——TP,FP,TN,FN的计算(一)
PV-RCNN:paper,code配套理论篇:PV-RCNN代码解读——TP,FP,TN,FN的计算在eval_class函数中添加如下输出代码:# pcdet/datasets/kitti/kitti_object_eval_python/eval.py# 计算统计量tp, fp, fn, similarity, thresholdsdef eval_class(gt_annos, dt_annos, current_classes,原创 2020-08-23 22:13:16 · 1626 阅读 · 1 评论 -
PV-RCNN代码测试——计算iou
PV-RCNN:paper,code配套理论篇:PV-RCNN代码解读——计算iou(一)输出代码为了简化起见,只关注3d的结果,原码中bbox, bev, aos的部分都被我注释掉了# 在eval_class定义中调用calculate_iou_partly之后的位置输出overlap的计算结果def eval_class(gt_annos, dt_annos, current_classes, difficultys, metric, min_overlaps, compute_aos=Fal原创 2020-08-21 20:54:31 · 1556 阅读 · 4 评论 -
PV-RCNN代码应用——更改测试集文件
PV-RCNN:paper,code进入data/kitti/ImageSets/val.txt,其中的数字即为我们要测试的点云数据,默认是3769个,将其修改为想要测试的点云文件的序号即可。更新一下代码: python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml...原创 2020-08-21 18:55:19 · 649 阅读 · 1 评论 -
PV-RCNN代码解读——计算iou
PV-RCNN:paper,codecalculate_iou_partly函数的调用# 计算iou# pcdet/datasets/kitti/kitti_object_eval_python/eval.pyrets = calculate_iou_partly(dt_annos, gt_annos, metric, num_parts)(overlaps, parted_overlaps, total_dt_num, total_gt_num) = rets''' overlaps是原创 2020-08-21 13:28:19 · 1977 阅读 · 2 评论 -
PV-RCNN代码解读——数据初始化
PV-RCNN:paper,code_prepare_data函数的调用# pcdet/datasets/kitti/kitti_object_eval_python/eval.py# 准备数据rets = _prepare_data(gt_annos, dt_annos, current_class, difficulty)(gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares, total_dc_num, tota原创 2020-08-20 20:24:45 · 1162 阅读 · 1 评论 -
PV-RCNN代码解读——TP,FP,TN,FN的计算
PV-RCNN:paper,codeget_mAP和get_mAP_R40函数的定义# pcdet/datasets/kitti/kitti_object_eval_python/eval.py# get_official_eval_result中用到了几个简单函数def get_mAP(prec): # 计算mAP sums = 0 for i in range(0, prec.shape[-1], 4): sums = sums + prec[..., i]原创 2020-08-20 19:42:03 · 3847 阅读 · 2 评论 -
PV-RCNN代码解读——eval.py
PV-RCNN:paper,code(一)目标检测模型评估的介绍训练完数据并且测试最后一个epoch之后,log的结果INFO Car AP@0.70, 0.70, 0.70:bbox AP:89.6559, 83.1009, 78.4558bev AP:87.8147, 77.5440, 76.10723d AP:75.0818, 64.6598, 58.0468aos AP:87.94, 80.87, 75.62这里涉及到目标检测中几个重要的定义:IoU(Intersect原创 2020-08-19 22:23:01 · 3556 阅读 · 11 评论 -
KITTI数据可视化代码
记录一个很好用的KITTI数据可视化的github代码git clone https://github.com/kuixu/kitti_object_vis.git原创 2020-08-18 12:59:49 · 1958 阅读 · 2 评论 -
PV-RCNN代码解读——train & test
PV-RCNN:paper,code在tools/train.py中找到以下表示开始训练的代码 # -----------------------start training--------------------------- logger.info('**********************Start training %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, a原创 2020-08-13 18:34:58 · 2937 阅读 · 0 评论 -
PV-RCNN代码解读——从点云到输入神经网络的数据处理
PV-RCNN:paper,code原创 2020-08-12 14:50:43 · 2626 阅读 · 2 评论 -
PV-RCNN代码应用——参数修改
PV-RCNN:paper,codePV-RCNN环境配置原创 2020-08-11 16:15:11 · 2346 阅读 · 16 评论 -
PV-RCNN代码应用——二进制文件统计点云数据范围
#-*- coding: UTF-8 -*- # 读取数据 bin 文件import osimport structdef read_data(file): file_path = file_dir+"/"+file final_text = open('final.txt', 'a') data_bin = open(file_path, 'rb') data_size = os.path.getsize(file_path) for i in rang原创 2020-08-10 20:24:02 · 838 阅读 · 0 评论 -
PV-RCNN环境配置
PV-RCNN:paper,code配置环境为Ubuntu16.04,需要配置的主要内容有:anacondapytorchcmakespconv如某些部分已安装可跳过(一)anaconda到anaconda官网下载对应版本或运行代码:wget https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-x86_64.sh如果没有wget,运行一下代码安装wget:sudo apt-get install wget安装an原创 2020-08-06 20:33:54 · 3467 阅读 · 9 评论 -
PV-RCNN代码解读——输入参数介绍
PV-RCNN:paper,code在上图中,本文所讲述的是左侧Data部分,也即传入foward函数之前的data处理部分,以方便如何使用该论文的方法应用于自己的数据。思路:(一)建立一个DemoDataset类,其中储存关于输入数据的所有信息,包含六个参数dataset_cfg=cfg.DATA_CONFIG # 数据参数包含数据集 / 数据路径 / 信息路径 / 数据处理器 / 数据增强器等class_names=cfg.CLASS_NAMES # 类别名training=Fal原创 2020-08-03 18:02:24 · 4014 阅读 · 2 评论 -
PV-RCNN代码解读——demo.py & test.py
PV-RCNN:paper,code1. 输入参数从demo.py的main()看起def main(): args, cfg = parse_config() demo_dataset = DemoDataset( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False, root_path=Path(args.data_path), ext=args.ext,原创 2020-07-30 21:22:07 · 5880 阅读 · 16 评论