- 博客(6)
- 资源 (1)
- 收藏
- 关注
原创 粒子群算法改进——自动退出迭代循环
当粒子已经找到最佳位置后,再增加迭代次数只会浪费计算时间,那么我们能否设计一个策略,能够自动退出迭代呢?循环跳出策略(1)初始化最大迭代次数、计数器以及最大计数值(例如分别取100, 0, 20)(2)定义“函数变化量容忍度”,一般取非常小的正数,例如10‐6;(3)在迭代的过程中,每次计算出来最佳适应度后,都计算该适应度和上一次迭代时最佳适应度的变化量(取绝对值);(4)判断这个变化量和“函数变化量容忍度”的相对大小,如果前者小,则计数器加1;否则计数器清0;(5)不断重复这个过程,有以下.
2020-11-10 20:30:48 2008
原创 粒子群算法改进——压缩因子法
前言概述粒子速度更新公式如下:vid = wvid-1 + c1r1(pbestid-xid)+ c2r2(gbestd-xid)在研究完粒子群算法中有关惯性权重的优化之后,我们把目光转向速度更新公式的后两项,根据之前所学可知:个体学习因子c1和社会学习因子c2决定了粒子本身经验信息和其他粒子的经验信息对粒子运行轨迹的影响,其反映了粒子群之间的信息交流。较大的c1值,会使粒子过多地在自身的局部范围内搜索较大的c2值,则又会促使粒子过早收敛到局部最优值。为了有效地控制粒子的飞行速度,使算法达到全局
2020-11-09 15:31:31 5836 2
原创 粒子群算法改进——随机惯性权重
随机惯性权重的优点使用随机的惯性权重,可以避免在迭代前期局部搜索能力的不足; 也可以避免在迭代后期全局搜索能力的不足。vid = wvid-1 + c1r1(pbestid-xid) + c2r2(gbestd-xid)w = μmin + (μmax+μmin) x rand() + σ x randn()其中,μmin是随机惯性权重的最小值;μmax是随机惯性权重的最大值;rand()为[0,1]均匀分布随机数;randn()为正态分布的随机数;σ(标准差)用来度量随机变量权重w与其数学期望
2020-11-09 09:05:24 5283 2
原创 粒子群算法改进——自适应惯性权重
适应度回顾适应度用于评价粒子优劣,一般设置为目标函数值众所周知一个较大的惯性权重有利于全局搜索一个较小的惯性权重有利于局部搜索vid=wvid-1+c1r1(pbestid-xid)+c2r2(gbestd-xid)求解最小值问题1、wmin和wmax是预设的最小与最大惯性系数,一般wmin取0.4,wmax取0.92、faveraged为第d次迭代时所有粒子的平均适应度3、f~~mind=min{f(x1d),f(x2d),…,f(xnd)},即第d次迭代时所有粒子的最小适应度
2020-11-07 10:17:58 21791 16
原创 粒子群算法改进——线性递减惯性权重
惯性权重回顾惯性权重w体现的是粒子继承先前的速度的能力Shi,Y最先将惯性权重w引入到粒子群算法中,并且分析指出一个较大的惯性权值有利于全局搜索一个较小的权值则更利于局部搜索线性递减惯性权重在搜索初期,增强全局搜索能力可以更大可能遍解空间,避免陷入局部最优解->广撒网在搜索后期,增强局部搜索能力可以更大可能的锁定最优解->精准打击为了更好地平衡算法的全局搜索以及局部搜索能力,Shi,Y提出了线性递减惯性权重LDIW(LinearDecreasingInertiaWei
2020-11-05 10:59:18 10452 4
原创 粒子群算法基础
粒子群算法算法简介算法策略算法流程图名词阐释符号说明图像解释核心公式参数分析Matlab实现算法简介粒子群算法,其全称为粒子群优化算法(ParticleSwarmOptimization,PSO)。它是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的搜索算法。算法策略粒子群算法的目标是使所有粒子在多维超体中找到最优解。首先给空间中的所有粒子分配初始随机位置和初始随机速度。然后根据每个粒子的速度、已知空间中的最优全局位置和粒子最优位置依次推进每个粒子的位置。随着计算的推移迭代,通过探索和利用搜索空
2020-10-24 19:38:50 3385 4
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人